Advertisement

Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 433–438 | Cite as

The Frequency Dependence of the Added Mass of Quartz Tuning Fork Immersed in He II

  • I. Gritsenko
  • K. Klokol
  • S. Sokolov
  • G. Sheshin
Article

Abstract

We measured the dependences of the resonance frequency of tuning forks immersed in liquid helium at \(T = 0.365\hbox { K}\) in the pressure interval from saturated vapor pressure to 24.8 atm. The quartz tuning forks have been studied with different resonance frequencies of 6.65, 8.46, 12.1, 25.0 and 33.6 kHz in vacuum. The measurements were taken in the laminar flow regime. The experimental data allow us to determine the added mass of a quartz tuning fork in He II. It was found that the added mass per unit length of the prong fork is frequency dependent. Some possible qualitative explanations for such dependence are proposed. In addition, we observed, at \(T = 0.365\hbox { K}\), the changes in added mass with pressure according to the pressure dependence of He II density.

Keywords

Superfluidity Laminar flow Added mass 

Notes

Acknowledgements

The authors thank K. Nemchenko and I. Adamenko for helpful discussions. We are also grateful to the group of ultralow temperatures from the University of Lancaster (UK) for donation of the quartz tuning forks. The research was partially supported by Research Youth Project of NAS of Ukraine (No. 5/H-2015).

References

  1. 1.
    D.O. Clubb, O.V.L. Buu, R.M. Bowley, R. Nyman, J.R. Owers-Bradley, J. Low Temp. Phys. 136, 1 (2004). doi: 10.1023/B:JOLT.0000035368.63197.16 ADSCrossRefGoogle Scholar
  2. 2.
    R. Blaauwgeers, M. Blažková, M. Človečko, V.B. Eltsov, R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, D.E. Zmeev, J. Low Temp. Phys. 146, 537 (2007). doi: 10.1007/s10909-006-9279-4 ADSCrossRefGoogle Scholar
  3. 3.
    A.P. Sebedash, J.T. Tuoriniemi, E.M.M. Pentti, A.J. Salmela, J. Low Temp. Phys. 150, 181 (2008). doi: 10.1007/s10909-007-9535-2 ADSCrossRefGoogle Scholar
  4. 4.
    E.M. Pentti, J.T. Tuoriniemi, A.J. Salmela, A.P. Sebedash, J. Low Temp. Phys. 150, 555 (2008). doi: 10.1007/s10909-007-9583-7 ADSCrossRefGoogle Scholar
  5. 5.
    D.I. Bradley, M. Človĕcko, E. Gažo, P. Skyba, J. Low Temp. Phys. 152, 147 (2008). doi: 10.1007/s10909-008-9815-5 ADSCrossRefGoogle Scholar
  6. 6.
    G.A. Sheshin, A.A. Zadorozhko, E.Ya. Rudavskii, V.K. Chagovets, L. Skrbek, M. Blazhkova, Low Temp. Phys. 34, 875 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    D.I. Bradley, M.J. Fear, S.N. Fisher, A.M. Guenault, R.P. Haley, C.R. Lawson, P.V.E. McClintock, G.R. Pickett, R. Schanen, V. Tsepelin, L.A. Wheatland, J. Low Temp. Phys. 156, 116 (2009). doi: 10.1007/s10909-009-9901-3 ADSCrossRefGoogle Scholar
  8. 8.
    Marcel Človĕcko, Emil Gažo, Martin Kupka, Maroš Skyba, Peter Skyba, J. Low Temp. Phys. 162, 669 (2011). doi: 10.1007/s10909-010-0330-0 ADSCrossRefGoogle Scholar
  9. 9.
    I.A. Gritsenko, A.A. Zadorozhko, A.S. Neoneta, V.K. Chagovets, G.A. Sheshin, Low Temp. Phys. 37, 551 (2011). doi: 10.1063/1.3626842 ADSCrossRefGoogle Scholar
  10. 10.
    I.A. Gritsenko, K.A. Klokol, S.S. Sokolov, G.A. Sheshin, Low Temp. Phys. 42, 21 (2016). doi: 10.1063/1.4940343 ADSCrossRefGoogle Scholar
  11. 11.
    D. Schmoranzer, M. La Mantia, G. Sheshin, I. Gritsenko, A. Zadorozhko, M. Rotter, L. Skrbek, J. Low Temp. Phys. 163, 317 (2011). doi: 10.1007/s10909-011-0353-1 ADSCrossRefGoogle Scholar
  12. 12.
    D.I. Bradley, M. Ćlovećko, S.N. Fisher, D. Garg, E. Guise, R.P. Haley, O. Kolosov, G.R. Pickett, V.T. Sepelin, Phys. Rev. B 85, 014501 (2012). doi: 10.1103/PhysRevB.85.014501 ADSCrossRefGoogle Scholar
  13. 13.
    I. Gritsenko, A. Zadorozhko, G. Sheshin, J. Low Temp. Phys. 171, 194 (2013). doi: 10.1007/s10909-012-0771-8 ADSCrossRefGoogle Scholar
  14. 14.
    I.A. Gritsenko, K.A. Klokol, S.S. Sokolov, G.A. Sheshin, Low Temp. Phys. to be publishGoogle Scholar
  15. 15.
    J.W. Daily, D.R.F. Harleman, “Fluid Dynamics”, Moscow “Energy”, (1971)Google Scholar
  16. 16.
    R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217 (1998). doi: 10.1063/1.556028 ADSCrossRefGoogle Scholar
  17. 17.
    W.-H. Chu, Technical Report No. 2, DTMB, Contract NObs-86396(X), Southwest Research Institute, San Antonio, Texas (1963)Google Scholar
  18. 18.
    J. Rysti, J. Tuoriniemi, J. Low Temp. Phys. 177(3–4), 133–150 (2014). doi: 10.1007/s10909-014-1203-8 ADSCrossRefGoogle Scholar
  19. 19.
    The rules on the calculation of the strength of the equipment and pipelines of nuclear power plants (IHAY G-7-002-86), Gosatomenergonadzor USSR, Moscow, “Energoatomizdat”, (1989)Google Scholar
  20. 20.
    V.L. Gurevich, B.D. Laikhtman, JETP 42(4), 628 (1975)ADSGoogle Scholar
  21. 21.
    Yu A. Kosevich, Sov. J. Low Temp. Phys. 9(5), 242 (1983)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • I. Gritsenko
    • 1
  • K. Klokol
    • 1
  • S. Sokolov
    • 1
  • G. Sheshin
    • 1
  1. 1.ILTPE - B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of UkraineKharkovUkraine

Personalised recommendations