Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 573–579 | Cite as

High Q value Quartz Tuning Fork in Vacuum as a Potential Thermometer in Millikelvin Temperature Range

  • M. Človečko
  • M. Grajcar
  • M. Kupka
  • P. Neilinger
  • M. Rehák
  • P. Skyba
  • F. Vavrek
Article
  • 176 Downloads

Abstract

The results of a newly developed pulse-demodulation (P-D) technique introduced to determine the resonant characteristics of a high Q value quartz tuning forks in vacuum and millikelvin temperature range are presented. Applying P-D technique to a standard 32 kHz quartz tuning fork with extremely low excitation energy of the order of a few femtojoules, we were able to measure the resonance frequency of the fork’s decay signal with resolution better than 10 \(\upmu \)Hz. Using this highly sensitive measurement technique, we found a continuous and reproducible temperature dependence of the tuning fork’s resonance frequency in the millikelvin temperature range. The observed dependence suggests a potential application for the quartz tuning forks to be used as thermometers in the millikelvin temperature range. We also discuss the physical origin of the observed phenomenon.

Keywords

Quartz tuning fork Low-temperature thermometry Mechanical resonators 

Notes

Acknowledgement

We acknowledge support of APVV-14-0605, APVV-0515-10, VEGA 2/0157/14, ITMS 2622012005 - EXTREM and partially by FP7 228464 - MICROKELVIN - European Microkelvin Collaboration Platform (former project of 7. FP of EU - Microkelvin). Support provided by the US Steel Košice s.r.o. is also very appreciated.

References

  1. 1.
    D.O. Clubb et al., J. Low Temp. Phys. 136, 1 (2004). doi: 10.1023/B:JOLT.0000035368.63197.16 ADSCrossRefGoogle Scholar
  2. 2.
    R. Blaauwgeers et al., J. Low Temp. Phys. 146, 537 (2007). doi: 10.1007/s10909-006-9279-4 ADSCrossRefGoogle Scholar
  3. 3.
    M. Blažková et al., J. Low Temp. Phys. 150, 525 (2008). doi: 10.1007/s10909-007-9587-3 ADSCrossRefGoogle Scholar
  4. 4.
    D.I. Bradley, M. Človečko, E. Gažo, P. Skyba, J. Low Temp. Phys. 152, 147 (2008). doi: 10.1007/s10909-008-9815-5 ADSCrossRefGoogle Scholar
  5. 5.
    D.I. Bradley et al., J. Low Temp. Phys. 156, 116 (2009). doi: 10.1007/s10909-009-9901-3 ADSCrossRefGoogle Scholar
  6. 6.
    D.I. Bradley et al., J. Low Temp. Phys. 157, 476 (2009). doi: 10.1007/s10909-009-9982-z ADSCrossRefGoogle Scholar
  7. 7.
    M. Blažková et al., J. Low Temp. Phys. 148, 305 (2007). doi: 10.1007/s10909-007-9389-7 ADSCrossRefGoogle Scholar
  8. 8.
    A.P. Sebedash, J.T. Tuoriniemi, E.M.M. Pentti, A.J. Salmela, J. Low Temp. Phys. 150, 181 (2008). doi: 10.1007/s10909-007-9535-2
  9. 9.
    E.M.M. Pentti, J.T. Tuoriniemi, A.J. Salmela, A.P. Sebedash, J. Low Temp. Phys. 150, 555 (2008). doi: 10.1007/s10909-007-9583-7
  10. 10.
    I.A. Gritsenko et al., J. Low Temp. Phys. 158, 450 (2010). doi: 10.1007/s10909-009-9950-7 ADSCrossRefGoogle Scholar
  11. 11.
    V.B. Efimov, D. Garg, O. Kolosov, P.V.E. McClintock, J. Low Temp. Phys. 158, 456 (2010). doi: 10.1007/s10909-009-0026-5 ADSCrossRefGoogle Scholar
  12. 12.
    M. Človečko et al., J. Low Temp. Phys. 162, 669 (2011). doi: 10.1007/s10909-010-0330-0 CrossRefGoogle Scholar
  13. 13.
    J. Rychen et al., Rev. Sci. Instrum. 70, 2765 (1999). doi: 10.1063/1.1149842 ADSCrossRefGoogle Scholar
  14. 14.
    R.D. Grober et al., Rev. Sci. Instrum. 71, 2776 (2000). doi: 10.1063/1.1150691 ADSCrossRefGoogle Scholar
  15. 15.
    Y. Seo, P. Cadden-Zimansky, V. Chandrasekhar, Appl. Phys. Lett. 87, 103103 (2005). doi: 10.1063/1.2037852 ADSCrossRefGoogle Scholar
  16. 16.
    A. Castellanos-Gomez, N. Agraït, G. Rubio-Bollinger, Nanotechnology 20, 215502 (2009). doi: 10.1088/0957-4484/20/21/215502 ADSCrossRefGoogle Scholar
  17. 17.
    K.L. Ekinci, M.L. Roukes, Rev. Sci. Instrum. 76, 061101 (2005). doi: 10.1063/1.1927327
  18. 18.
    E. Collin, Yu.M. Bunkov, H. Godfrin, Phys. Rev. B 82, 235416 (2010). doi: 10.1103/PhysRevB.82.235416
  19. 19.
    M. Človečko et al., J. Low Temp. Phys. 175, 449 (2014). doi: 10.1007/s10909-013-0936-0 CrossRefGoogle Scholar
  20. 20.
    M. Sansa et al., Nature Nanotechnol. 11, 552 (2016). doi: 10.1038/nnano.2016.19 ADSCrossRefGoogle Scholar
  21. 21.
    L.G. Remus, M.P. Blencowe, Y. Tanaka, Phys. Rev. B 80, 174103 (2009). doi: 10.1103/PhysRevB.80.174103 ADSCrossRefGoogle Scholar
  22. 22.
    B.H. Schneider et al., Nat. Commun. 5, 5819 (2014). doi: 10.1038/ncomms6819 CrossRefGoogle Scholar
  23. 23.
    O. Maillet et al., New J. Phys. 18, 073022 (2016). doi: 10.1088/1367-2630/18/7/073022 ADSCrossRefGoogle Scholar
  24. 24.
    B. Cowan, Nuclear Magnetic Resonance and Relaxation (Cambridge University Press, Cambridge, 2005), p. 55Google Scholar
  25. 25.
    P. Skyba, J. Low Temp. Phys. 160, 219 (2010). doi: 10.1007/s10909-010-0189-0 ADSCrossRefGoogle Scholar
  26. 26.
    S. Holt, P. Skyba, Rev. Sci. Instrum. 83, 064703 (2012). doi: 10.1063/1.4725526 ADSCrossRefGoogle Scholar
  27. 27.
    I.G. Main, Vibrations and Waves in Physics, 2nd edn. (Cambridge University Press, Cambridge, 1984), p. 35MATHGoogle Scholar
  28. 28.
    J. Tersoff, Phys. Rev. Lett. 52, 465 (1984). doi: 10.1103/PhysRevLett.52.465 ADSCrossRefGoogle Scholar
  29. 29.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity. 3rd English edn. Revised and Enlarged (Pergamon Press, Oxford, 1986), p. 99Google Scholar
  30. 30.
    M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1962), p. 322Google Scholar
  31. 31.
    B.K. Ridley, Quantum Processes in Semiconductors, 5th edn. (Oxford University Press, Oxford, 2013), p. 418CrossRefMATHGoogle Scholar
  32. 32.
    K.P. O’Donnell, X. Chen, Appl. Phys. Lett 58, 2924 (1991). doi: 10.1063/1.104723

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Človečko
    • 1
  • M. Grajcar
    • 2
  • M. Kupka
    • 1
  • P. Neilinger
    • 2
  • M. Rehák
    • 2
  • P. Skyba
    • 1
  • F. Vavrek
    • 1
  1. 1.Centre of Low Temperature Physics, Institute of Experimental PhysicsSAS and P. J. Šafárik University in KošiceKošiceSlovakia
  2. 2.Department of Experimental PhysicsComenius UniversityBratislavaSlovakia

Personalised recommendations