Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 677–684 | Cite as

Zero-Temperature Properties of a Strongly Interacting Superfluid Fermi Gas in the BCS–BEC Crossover Region

  • H. Tajima
  • P. van Wyk
  • R. Hanai
  • D. Kagamihara
  • D. Inotani
  • M. Horikoshi
  • Y. Ohashi
Article

Abstract

We investigate thermodynamic properties and effects of quantum fluctuations in the Bardeen–Cooper–Schrieffer (BCS)–Bose–Einstein condensation (BEC) crossover region of a superfluid Fermi gas in the low-temperature limit. Including strong-coupling corrections within the framework of an extended T-matrix approximation, we numerically compute the isothermal compressibility \(\chi _n\). While quantum fluctuation effects on \(\chi _n\) in the strong-coupling BEC regime are explained by the quantum depletion due to a repulsive interaction between tightly bound molecules, effects of self-energy shift on the Fermi chemical potential are found to enhance \(\chi _n\) in the weak-coupling BCS region. We also show that the calculated \(\chi _n\) agrees well with the recent experiment on a \(^6\)Li Fermi gas done from the weak-coupling region to the unitarity limit. Our result would be useful for the study of many-body quantum corrections in the BCS–BEC crossover region of a strongly interacting Fermi superfluid.

Keywords

Ultracold Fermi gas BCS–BEC crossover Quantum fluctuations 

Notes

Acknowledgements

We thanks to M. Matsumoto for useful discussions. This work was supported by KiPAS project in Keio University. H.T. and R.H. were supported by a grant-in-aid for JSPS fellows. D.I. was supported by grant-in-aid for Young Scientists (B) from JSPS in Japan (No.16K17773). M.H. was supported by grant-in-aid for Scientific Research on Innovative Areas (No. 24105006) and grant-in-aid for Young Scientists (A) from JSPS in Japan (No. 23684033). Y.O. was supported by grant-in-aid for Scientific Research from MEXT and JSPS in Japan (No.15H00840,No.15K00178,No.16K05503).

References

  1. 1.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    D.M. Eagles, Phys. Rev. 186, 456 (1969)ADSCrossRefGoogle Scholar
  4. 4.
    A.J. Leggett, in Diatomic Molecules and Cooper Pairs, ed. by A. Pekalski, J. Przystawa. Modern Trends in the Theory of Condensed Matter (Springer, Berlin, 1980)Google Scholar
  5. 5.
    P. Nozières, S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Ohashi, A. Griffin, Phys. Rev. Lett. 89, 130402 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, W. Ketterle, Phys. Rev. Lett. 92, 120403 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    M. Horikoshi, S. Nakajima, M. Ueda, T. Mukaiyama, Science 327, 442 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    S. Nascimbène, N. Navon, K.J. Jiang, F. Chevy, C. Salomon, Nature 463, 1057 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    N. Navon, S. Nascimbène, F. Chevy, C. Salomon, Science 328, 729 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    C. Sanner, E.J. Su, A. Keshet, W. Huang, J. Gillen, R. Gommers, W. Ketterle, Phys. Rev. Lett. 106, 010402 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    M.J.H. Ku, A.T. Sommer, L.W. Cheuk, M.W. Zwierlein, Science 335, 563 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    A. Gezerlis, J. Carlson, Phys. Rev. C 77, 032801(R) (2008)ADSCrossRefGoogle Scholar
  15. 15.
    D.J. Dean, M. Hjorth-Jensen, Rev. Mod. Phys. 75, 607 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    M. Horikoshi, M. Koashi, H. Tajima, Y. Ohashi, M. Kuwata-Gonokami, in preparationGoogle Scholar
  17. 17.
    H. Hu, X.-J. Liu, P.D. Drummond, Europhys. Lett. 74, 574 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    R. Haussmann, W. Rantner, S. Cerrito, W. Zwerger, Phys. Rev. A 75, 023610 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    F. Palestini, A. Perali, P. Pieri, G.C. Strinati, Phys. Rev. A 82, 021605(R) (2010)ADSCrossRefGoogle Scholar
  20. 20.
    A. Bulgac, J.E. Drut, P. Magierski, Phys. Rev. 78, 023625 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    T. Kashimura, R. Watanabe, Y. Ohashi, Phys. Rev. A 86, 043622 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    R. Hanai, T. Kashimura, R. Watanabe, D. Inotani, Y. Ohashi, Phys. Rev. A 88, 053621 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    T. Kashimura, R. Watanabe, Y. Ohashi, Phys. Rev. A 89, 013618 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    H. Tajima, T. Kashimura, R. Hanai, R. Watanabe, Y. Ohashi, Phys. Rev. A 89, 033617 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    H. Tajima, R. Hanai, Y. Ohashi, Phys. Rev. A 93, 013610 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    A. Schirotzek, Y. Shin, C.H. Schunck, W. Ketterle, Phys. Rev. Lett. 101, 140403 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    J.J. Kinnunen, Phys. Rev. A 85, 012701 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Sagi, T.E. Drake, R. Paudel, R. Chapurin, D.S. Jin, Phys. Rev. Lett. 114, 075301 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Ohashi, A. Griffin, Phys. Rev. A 67, 063612 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    R. Watanabe, S. Tsuchiya, Y. Ohashi, Phys. Rev. A 82, 043630 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    J.O. Andersen, Rev. Mod. Phys. 76, 599 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    D.S. Petrov, C. Salomon, G.V. Shlyapnikov, Phys. Rev. Lett. 93, 090404 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    K. Seo, C.A.R. Sá de Melo, Compressibility and spin susceptibility in the evolution from BCS to BEC superfluidsar (2011). arXiv:1105.4365v1

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • H. Tajima
    • 1
  • P. van Wyk
    • 1
  • R. Hanai
    • 1
  • D. Kagamihara
    • 1
  • D. Inotani
    • 1
  • M. Horikoshi
    • 2
    • 3
  • Y. Ohashi
    • 1
  1. 1.Department of Physics, Faculty of Science and TechnologyKeio UniversityYokohamaJapan
  2. 2.Institute for Photon Science and Technology, Graduate School of ScienceThe University of TokyoTokyoJapan
  3. 3.Photon Science Center, Graduate School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations