Advertisement

Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 439–445 | Cite as

Head-on Collisions of Xe Atoms Against Superfluid \(^4\)He Nanodroplets

  • François Coppens
  • Antonio Leal
  • Manuel Barranco
  • Nadine Halberstadt
  • Marti Pi
Article

Abstract

We study the head-on collision of a heliophilic xenon atom with a superfluid \(^4\)He droplet made of 1000 atoms. At variance with the findings for a heliophobic cesium atom of a similar atomic weight, it is found that the xenon atom has to hit the droplet with a large kinetic energy in order to get across it without being captured. When it is not captured, the xenon impurity does not emerge as a bare atom; instead, due to its heliophilic character it carries away some helium atoms.

Keywords

Superfluid \(^4\)He droplets Density functional theory Atomic collisions 

Notes

Acknowledgements

This work has been performed under Grants No. FIS2014-52285-C2-1-P from DGI, Spain, and 2014SGR401 from Generalitat de Catalunya and using HPC resources from CALMIP (Grant P1039). AL has been supported by the ME (Spain) FPI program, Grant No. BES-2012-057439. MB thanks the Université Fédérale Toulouse Midi-Pyrénées for financial support through the “Chaires d’Attractivité 2014” Programme IMDYNHE.

References

  1. 1.
    A. Scheidemann, J.P. Toennies, J.A. Northby, Phys. Rev. Lett 64, 1899 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    J.P. Toennies, A.F. Vilesov, Angew. Chem. Phys. 43, 2622 (2004)CrossRefGoogle Scholar
  3. 3.
    J. Harms, J.P. Toennies, F. Dalfovo, Phys. Rev. B 58, 3341 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    J. Harms, J.P. Toennies, M. Barranco, M. Pi, Phys. Rev. B 63, 184513 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    E. Krotscheck, R.E. Zillich, Eur. Phys. J. D 43, 113 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    E. Krotscheck, R.E. Zillich, Phys. Rev. B 77, 094507 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    D. Eichenauer, A. Scheidemann, J.P. Toennies, Z. Phys. D 8, 295 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    A. Leal, D. Mateo, A. Hernando, M. Pi, M. Barranco, Phys. Chem. Chem. Phys. 16, 23206 (2014)CrossRefGoogle Scholar
  9. 9.
    A. Vilà, M. González, R. Mayol, Phys. Chem. Chem. Phys. 18, 2006 (2016)CrossRefGoogle Scholar
  10. 10.
    L.F. Gomez et al., Science 345, 906 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    C.F. Jones et al., Phys. Rev. B 93, 180510(R) (2016)ADSCrossRefGoogle Scholar
  12. 12.
    F. Ancilotto, M. Pi, M. Barranco, Phys. Rev. B 90, 174512 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    F. Ancilotto, M. Pi, M. Barranco, Phys. Rev. B 91, 100503(R) (2015)ADSCrossRefGoogle Scholar
  14. 14.
    F. Ancilotto, M. Barranco, F. Caupin, R. Mayol, M. Pi, Phys. Rev. B 72, 214522 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    K.T. Tang, J.P. Toennies, Z. Phys. D 1, 91 (1986)ADSCrossRefGoogle Scholar
  16. 16.
    L.F. Gomez, E. Loginov, R. Sliter, A.F. Vilesov, J. Chem. Phys. 135, 154201 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    A. Leal, X. Zhang, M. Barranco, F. Cargnoni, A. Hernando, D. Mateo, M. Mella, M. Drabbels, M. Pi, J. Chem. Phys. 144, 094302 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    D. Mateo, A. Leal, A. Hernando, M. Barranco, M. Pi, F. Cargnoni, M. Mella, X. Zhang, M. Drabbels, J. Chem. Phys. 140, 131101 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratoire des Collisions, Agrégats, Réactivité, IRSAMC, UMR 5589, CNRSUniversité Toulouse 3Toulouse Cedex 09France
  2. 2.Departament FQA, Facultat de Física, and IN²UBUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations