Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 712–718 | Cite as

Magnetic Signatures of Quantum Critical Points of the Ferrimagnetic Mixed Spin-(1/2, S) Heisenberg Chains at Finite Temperatures



Magnetic properties of the ferrimagnetic mixed spin-(1/2,S) Heisenberg chains are examined using quantum Monte Carlo simulations for two different quantum spin numbers \(S=1\) and 3/2. The calculated magnetization curves at finite temperatures are confronted with zero-temperature magnetization data obtained within the density matrix renormalization group method, which imply an existence of two quantum critical points determining a breakdown of the gapped Lieb–Mattis ferrimagnetic phase and Tomonaga–Luttinger spin-liquid phase, respectively. While a square root behavior of the magnetization accompanying each quantum critical point is gradually smoothed upon rising temperature, the susceptibility and isothermal entropy change data at low temperatures provide a stronger evidence of the zero-temperature quantum critical points through marked local maxima and minima, respectively.


Ferrimagnetic Heisenberg chains Quantum critical point Quantum Monte Carlo 



This work was financially supported by the Grant of The Ministry of Education, Science, Research and Sport of the Slovak Republic under the Contract No. VEGA 1/0043/16, as well as, by Grants of the Slovak Research and Development Agency provided under Contract Nos. APVV-0097-12 and APVV-14-0073.


  1. 1.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 1999)MATHGoogle Scholar
  2. 2.
    D.C. Mattis, The Many-Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension (World Scientific, Singapore, 1993)CrossRefMATHGoogle Scholar
  3. 3.
    J.S. Miller, M. Drillon, Magnetism: Molecules to Materials I (Wiley-VCH, Weinheim, 2001)CrossRefGoogle Scholar
  4. 4.
    J. Simon, W.S. Bakr, R. Ma, M.E. Tai, P.M. Preiss, M. Greiner, Nature 472, 307 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    A. Honecker, J. Schulenburg, J. Richter, J. Phys.: Condens. Matter 16, S749 (2004)ADSGoogle Scholar
  6. 6.
    K. Okunishi, Prog. Theor. Phys. Suppl. 145, 119 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    G. Misguich, Exact methods in low-dimensional statistical physics and quantum computing, in Quantum Spin Liquids, ed. by J. Jacobsen, S. Ouvry, V. Pasquier, L.F. Cugliandolo, D. Serban (Oxford University Press, Oxford, 2008)Google Scholar
  8. 8.
    Y. Zhou, K. Kanoda, T.-K. Ng, preprint arxiv:1607.03228 (2016)
  9. 9.
    T. Kuramoto, J. Phys. Soc. Jpn. 67, 1762 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    S. Yamamoto, T. Sakai, J. Phys.: Condens. Matter 11, 5175 (1999)ADSGoogle Scholar
  11. 11.
    T. Sakai, S. Yamamoto, Phys. Rev. B 60, 4053 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    N.B. Ivanov, Phys. Rev. B 62, 3271 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    A. Honecker, F. Mila, M. Troyer, Eur. Phys. J. B 15, 227 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    S. Yamamoto, T. Sakai, Phys. Rev. B 62, 3795 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    T. Sakai, S. Yamamoto, Phys. Rev. B 65, 214403 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    A.S.F. Tenório, R.R. Montenegro-Filho, M.D. Coutinho-Filho, J. Phys.: Condens. Matter 23, 506003 (2011)Google Scholar
  17. 17.
    N.B. Ivanov, S.I. Petrova, J. Schnack, Eur. Phys. J. B 89, 121 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    J. Strečka, preprint arxiv:1607.03617 (2016)
  19. 19.
    E. Lieb, D. Mattis, J. Math. Phys. 3, 749 (1962)ADSCrossRefGoogle Scholar
  20. 20.
    M. Oshikawa, M. Yamanaka, I. Affleck, Phys. Rev. Lett. 78, 1984 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    A.W. Sandvik, Phys. Rev. B 59, 14157 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    B. Bauer, L.D. Carr, H.G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S.V. Isakov, D. Koop, P.N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawlowski, J.D. Picon, L. Pollet, E. Santos, V.W. Scarola, U. Schollwöck, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M.L. Wall, P. Werner, S. Wessel, J. Stat. Mech.: Theor. Exp. 2011, P05001 (2011)Google Scholar
  23. 23.
    O. Kahn, Struct. Bond. (Berlin) 68, 89 (1987)CrossRefGoogle Scholar
  24. 24.
    M. Drillon, E. Coronado, D. Beltran, R. Georges, J. Appl. Phys. 57, 3353 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of PhysicsFaculty of Science of P. J. Šafárik UniversityKošiceSlovak Republic
  2. 2.Institute for Condensed Matter PhysicsNASULviv-11Ukraine

Personalised recommendations