Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 376–382 | Cite as

Cavitation Bubbles Generated by Vibrating Quartz Tuning Fork in Liquid \(^4\)He Close to the \(\lambda \)-Transition

  • Daniel Duda
  • Patrik Švančara
  • Marco La Mantia
  • Miloš Rotter
  • David Schmoranzer
  • Oleg Kolosov
  • Ladislav Skrbek
Article

Abstract

We report direct optical observation of cavitation bubbles in liquid helium, both in classical viscous He I and in superfluid He II, close to the \(\lambda \)-transition. Heterogenous cavitation due to the fast-flowing liquid over the rough surface of prongs of a quartz tuning fork oscillating at its fundamental resonant frequency of \(4\,\mathrm {kHz}\) occurs in the form of a cluster of small bubbles rapidly changing its size and position. In accord with previous investigators, we find the cavitation threshold lower in He I than in He II. In He I, the detached bubbles last longer than one camera frame (10 ms), while in He II the cavitation bubbles do not tear off from the surface of the fork up to the highest attainable drive.

Keywords

Liquid helium Cavitation Bubble dynamics Tunning fork 

Notes

Acknowledgments

We thank Bohumil Vejr and Martin Jackson for valuable help. We acknowledge the support of the Czech Science Foundation—GAČR 16–00580S; D. D. also acknowledges the support of Charles University—GAUK 1968214 and D. S. also acknowledges institutional support under UNCE 2040.

References

  1. 1.
    S. Balibar, J. Low Temp. Phys. 129, 363 (2002)ADSCrossRefGoogle Scholar
  2. 2.
    D.W. Oxtoby, J. Phys. Condens. Matter 4, 7627 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    R.D. Finch, Phys. Fluids 12, 1775 (1969)ADSCrossRefGoogle Scholar
  4. 4.
    R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    M. Blažková, T.V. Chagovets, M. Rotter, D. Schmoranzer, L. Skrbek, J. Low Temp. Phys. 150, 194 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    M. Blažková, D. Schmoranzer, L. Skrbek, Low Temp. Phys. 34, 298 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    H.J. Maris, S. Balibar, M.S. Pettersen, J. Low Temp. Phys. 93, 1069 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    A. Qu, A. Trimeche, P. Jacquier, J. Grucker, Phys. Rev. B 93, 174521 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    M. La Mantia, T.V. Chagovets, M. Rotter, L. Skrbek, Rev. Sci. Instrum. 83, 055109 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    R. Blaauwegeers, M. Blažková, M. Človečko, V.B. Eltsov, R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, D.E. Zmeev, J. Low Temp. Phys. 146, 537 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic
  2. 2.Physics DepartmentLancaster UniversityLancasterUK

Personalised recommendations