Skip to main content

Statistical Measurement of Counterflow Turbulence in Superfluid Helium-4 Using \(\hbox {He}_2^*\) Tracer-Line Tracking Technique

An Erratum to this article was published on 15 February 2017

Abstract

We report preliminary results of a systematic study of the flow of normal fluid component in steady-state quantum turbulence in thermal counterflow of superfluid \(^{4}\hbox {He}\) using a high-precision flow visualisation technique based on the tracking of thin lines of \(\hbox {He}_2^{*}\) molecular tracers. Non-trivial profiles of mean velocity and turbulent fluctuation across the channel are observed with complicated temperature- and heat flux-dependencies. Mean turbulence intensity, however, depends on velocity only very weakly and is controlled primarily by the temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. D.R. Tilley, J. Tilley, Superfluidity and Superconductivity (CRC Press, Boca Raton, 1994)

    MATH  Google Scholar 

  2. W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 126, 167 (2002)

    ADS  Article  Google Scholar 

  3. L. Skrbek, K.R. Sreenivasan, Phys. Fluids 24, 055109 (2012)

    Article  Google Scholar 

  4. W.F. Vinen, Proc. R. Soc. Lond. Ser. A 242, 493 (1957)

    ADS  Article  Google Scholar 

  5. W. Guo, M. La Mantia, D.P. Lathrop, S.W. Van Sciver, Proc. Natl. Acad. Sci. USA 111, 4653 (2014)

    ADS  Article  Google Scholar 

  6. S.W.V. Sciver, S. Fuzier, T. Xu, J. Low Temp. Phys. 148, 225 (2007)

    ADS  Article  Google Scholar 

  7. T. Zhang, S.W.V. Sciver, Nat. Phys. 1, 36 (2005)

    Article  Google Scholar 

  8. G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Nature 441, 588 (2006)

    ADS  Article  Google Scholar 

  9. M.S. Paoletti, R.B. Fiorito, K.R. Sreenivasan, D.P. Lathrop, J. Phys. Soc. Jpn. 77, 111007/1 (2008)

    ADS  Article  Google Scholar 

  10. M. La Mantia, L. Skrbek, EPL 106, 46002 (2014)

    ADS  Article  Google Scholar 

  11. M. La Mantia, L. Skrbek, Phys. Rev. B 90, 014519 (2014)

    ADS  Article  Google Scholar 

  12. D.R. Poole, C.F. Barenghi, Y.A. Sergeev, W.F. Vinen, Phys. Rev. B 71, 064514 (2005)

    ADS  Article  Google Scholar 

  13. E. Varga, C.F. Barenghi, Y.A. Sergeev, L. Skrbek, J. Low Temp. Phys 183, 215 (2016)

    ADS  Article  Google Scholar 

  14. D. Kivotides, Phys. Rev. B 77, 174508/1 (2008)

    ADS  Google Scholar 

  15. W. Guo, S. Cahn, J. Nikkel, W. Vinen, D. McKinsey, Phys. Rev. Lett. 105, 045301 (2010)

    ADS  Article  Google Scholar 

  16. W. Guo, J. Wright, S. Cahn, J. Nikkel, D. McKinsey, J. Low Temp. Phys. 158, 346 (2009)

    ADS  Article  Google Scholar 

  17. W. Guo, J. Wright, S. Cahn, J. Nikkel, D.N. McKinsey, Phys. Rev. Lett 102, 235301 (2009)

    ADS  Article  Google Scholar 

  18. J. Gao, A. Marakov, W. Guo, B. Pawlowski, S. Van Sciver, G. Ihas, D. McKinsey, W. Vinen, Rev. Sci. Instrum. 86, 093904 (2015)

    ADS  Article  Google Scholar 

  19. D.E. Zmeev, F. Pakpour, P.M. Walmsley, W.G.A.I. Golov, D.N. McKinsey, G.G. Ihas, P.V.E. McClintock, S.N. Fisher, W.F. Vinen, Phys. Rev. Lett. 110, 175303 (2013)

    ADS  Article  Google Scholar 

  20. J. Bominaar, M. Pashtrapanska, T. Elenbaas, N. Dam, H. ter Meulen, W. van de Water, Phys. Rev. E 77, 046312 (2008)

    ADS  Article  Google Scholar 

  21. A. Benderskii, J. Eloranta, R. Zadoyan, V. Apkarian, J. Chem. Phys. 117, 2101 (2002)

    Article  Google Scholar 

  22. D. McKinsey, C. Brome, J. Butterworth, S. Dzhosyuk, P. Huffman, C. Mattoni, J. Doyle, R. Golub, K. Habicht, Phys. Rev. A 59, 200 (1999)

    ADS  Article  Google Scholar 

  23. A.V. Benderskii, R. Zadoyan, N. Schwentner, V.A. Apkarianb, J. Chem. Phys. 110, 1542 (1999)

    ADS  Article  Google Scholar 

  24. A. Marakov, J. Gao, W. Guo, S.W.V. Sciver, G.G. Ihas, D.N. Mckinsey, W. Vinen, Phys. Rev. B 91, 094503 (2015)

    ADS  Article  Google Scholar 

  25. R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27(6), 1217–1274 (1998)

    ADS  Article  Google Scholar 

  26. J. Gao, W. Guo, W.F. Vinen, Phys. Rev. B 94, 094502 (2016)

    ADS  Article  Google Scholar 

  27. A.W. Baggaley, J. Laurie, J. Low Temp. Phys. 178, 35–52 (2015)

Download references

Acknowledgments

J.G. and W.G. acknowledge the support from the US Department of Energy under Grant DE-FG02 96ER40952. E.V. acknowledges financial support from the Charles University in Prague and the hospitality of the National High Magnetic Field Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Varga.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10909-017-1758-2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Varga, E., Guo, W. et al. Statistical Measurement of Counterflow Turbulence in Superfluid Helium-4 Using \(\hbox {He}_2^*\) Tracer-Line Tracking Technique. J Low Temp Phys 187, 490–496 (2017). https://doi.org/10.1007/s10909-016-1681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1681-y

Keywords

  • Quantum turbulence
  • Thermal counterflow
  • \(\hbox {He}_2^{*}\) molecules