Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 490–496 | Cite as

Statistical Measurement of Counterflow Turbulence in Superfluid Helium-4 Using \(\hbox {He}_2^*\) Tracer-Line Tracking Technique

  • J. Gao
  • E. Varga
  • W. Guo
  • W. F. Vinen


We report preliminary results of a systematic study of the flow of normal fluid component in steady-state quantum turbulence in thermal counterflow of superfluid \(^{4}\hbox {He}\) using a high-precision flow visualisation technique based on the tracking of thin lines of \(\hbox {He}_2^{*}\) molecular tracers. Non-trivial profiles of mean velocity and turbulent fluctuation across the channel are observed with complicated temperature- and heat flux-dependencies. Mean turbulence intensity, however, depends on velocity only very weakly and is controlled primarily by the temperature.


Quantum turbulence Thermal counterflow \(\hbox {He}_2^{*}\) molecules 



J.G. and W.G. acknowledge the support from the US Department of Energy under Grant DE-FG02 96ER40952. E.V. acknowledges financial support from the Charles University in Prague and the hospitality of the National High Magnetic Field Laboratory.


  1. 1.
    D.R. Tilley, J. Tilley, Superfluidity and Superconductivity (CRC Press, Boca Raton, 1994)zbMATHGoogle Scholar
  2. 2.
    W.F. Vinen, J.J. Niemela, J. Low Temp. Phys. 126, 167 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    L. Skrbek, K.R. Sreenivasan, Phys. Fluids 24, 055109 (2012)CrossRefGoogle Scholar
  4. 4.
    W.F. Vinen, Proc. R. Soc. Lond. Ser. A 242, 493 (1957)ADSCrossRefGoogle Scholar
  5. 5.
    W. Guo, M. La Mantia, D.P. Lathrop, S.W. Van Sciver, Proc. Natl. Acad. Sci. USA 111, 4653 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    S.W.V. Sciver, S. Fuzier, T. Xu, J. Low Temp. Phys. 148, 225 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    T. Zhang, S.W.V. Sciver, Nat. Phys. 1, 36 (2005)CrossRefGoogle Scholar
  8. 8.
    G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Nature 441, 588 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    M.S. Paoletti, R.B. Fiorito, K.R. Sreenivasan, D.P. Lathrop, J. Phys. Soc. Jpn. 77, 111007/1 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    M. La Mantia, L. Skrbek, EPL 106, 46002 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    M. La Mantia, L. Skrbek, Phys. Rev. B 90, 014519 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    D.R. Poole, C.F. Barenghi, Y.A. Sergeev, W.F. Vinen, Phys. Rev. B 71, 064514 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    E. Varga, C.F. Barenghi, Y.A. Sergeev, L. Skrbek, J. Low Temp. Phys 183, 215 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    D. Kivotides, Phys. Rev. B 77, 174508/1 (2008)ADSGoogle Scholar
  15. 15.
    W. Guo, S. Cahn, J. Nikkel, W. Vinen, D. McKinsey, Phys. Rev. Lett. 105, 045301 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    W. Guo, J. Wright, S. Cahn, J. Nikkel, D. McKinsey, J. Low Temp. Phys. 158, 346 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    W. Guo, J. Wright, S. Cahn, J. Nikkel, D.N. McKinsey, Phys. Rev. Lett 102, 235301 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    J. Gao, A. Marakov, W. Guo, B. Pawlowski, S. Van Sciver, G. Ihas, D. McKinsey, W. Vinen, Rev. Sci. Instrum. 86, 093904 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    D.E. Zmeev, F. Pakpour, P.M. Walmsley, W.G.A.I. Golov, D.N. McKinsey, G.G. Ihas, P.V.E. McClintock, S.N. Fisher, W.F. Vinen, Phys. Rev. Lett. 110, 175303 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    J. Bominaar, M. Pashtrapanska, T. Elenbaas, N. Dam, H. ter Meulen, W. van de Water, Phys. Rev. E 77, 046312 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    A. Benderskii, J. Eloranta, R. Zadoyan, V. Apkarian, J. Chem. Phys. 117, 2101 (2002)CrossRefGoogle Scholar
  22. 22.
    D. McKinsey, C. Brome, J. Butterworth, S. Dzhosyuk, P. Huffman, C. Mattoni, J. Doyle, R. Golub, K. Habicht, Phys. Rev. A 59, 200 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    A.V. Benderskii, R. Zadoyan, N. Schwentner, V.A. Apkarianb, J. Chem. Phys. 110, 1542 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    A. Marakov, J. Gao, W. Guo, S.W.V. Sciver, G.G. Ihas, D.N. Mckinsey, W. Vinen, Phys. Rev. B 91, 094503 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27(6), 1217–1274 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    J. Gao, W. Guo, W.F. Vinen, Phys. Rev. B 94, 094502 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    A.W. Baggaley, J. Laurie, J. Low Temp. Phys. 178, 35–52 (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentFlorida State UniversityTallahasseeUSA
  2. 2.National High Magnetic Field LaboratoryTallahasseeUSA
  3. 3.Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic
  4. 4.School of Physics and AstronomyUniversity of BirminghamBirminghamUK

Personalised recommendations