Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 390–397 | Cite as

Momentum Distribution of Liquid \(^{4}\)He Across the Normal–Superfluid Phase Transition



We have carried out a study of the momentum distribution and of the spectrum of elementary excitations of liquid \(^4\)He across the normal–superfluid transition temperature, using the path integral Monte Carlo method. Our results for the momentum distribution in the superfluid regime show that a kink is present in the range of momenta corresponding to the roton excitation. This effect disappears when crossing the transition temperature to the normal fluid, in a behavior currently unexplained by theory.


Superfluid helium Momentum distribution Quantum Monte Carlo 



We acknowledge partial financial support from the MICINN (Spain) Grant No. FIS2014-56257-C2-1-P.


  1. 1.
    R. Henry, Glyde, Excitations in Liquid and Solid Helium (Oxford University Press, Oxford, 1994)Google Scholar
  2. 2.
    S.W. Lovesey, Condensed Matter Physics: Dynamic Correlations (Benjamin-Cummings, San Francisco, 1986)Google Scholar
  3. 3.
    K. Beauvois, C.E. Campbell, J. Dawidowski, B. Fåk, H. Godfrin, E. Krotscheck, H.-J. Lauter, T. Lichtenegger, J. Ollivier, A. Sultan, Phys. Rev. B 94, 024504 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    J. Gavoret, P. Nozieres, Ann. Phys. (N.Y.) 28, 349 (1964)ADSCrossRefGoogle Scholar
  5. 5.
    P. Sokol, in Bose-Einstein Condensation, ed. by A. Griffin, D.W. Snooke, S. Stringari (Cambridge University Press, Cambridge, 1995)Google Scholar
  6. 6.
    E. Manousakis, V.R. Pandharipande, Q.N. Usmani, Phys. Rev. B 31, 7022 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    S. Moroni, G. Senatore, S. Fantoni, Phys. Rev. B 55, 1040 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    R. Rota, J. Boronat, J. Low Temp. Phys. 166, 21 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    D.M. Ceperley, E.L. Pollock, Phys. Rev. Lett. 56, 351 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    R.A. Aziz, F.R.W. McCourt, C.C.K. Wong, Mol. Phys. 61, 1487 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    D.M. Ceperley, Rev. Mod. Phys. 67, 279 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    K. Sakkos, J. Casulleras, J. Boronat, J. Chem. Phys. 130, 204109 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    Siu A. Chin, C.R. Chen, J. Chem. Phys. 117, 1409 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    M. Boninsegni, N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. E 74, 036701 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    M. Jarrell, J.E. Gubernatis, Phys. Rep. 269, 133 (1996)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A.W. Sandwik, Phys. Rev. B 57, 10287 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    A.S. Mishckenko, N.V. Prokof’ev, A. Sakamoto, B.V. Svistunov, Phys. Rev. B 62, 6317 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    N.V. Prokof’ev, B.V. Svistunov, JEPT Lett. 97, 649 (2013)ADSGoogle Scholar
  19. 19.
    E. Vitali, M. Rossi, L. Reatto, D.E. Galli, Phys. Rev. B 82, 174510 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    G. Ferré, J. Boronat, Phys. Rev. B 93, 104510 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    F. Mezei, Phys. Rev. Lett. 44, 1601 (1980)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Departament de FísicaUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Laboratoire Matériaux et Phénomènes QuantiquesUniversité Paris Diderot, Sorbonne Paris Cité, CNRS-UMR7162ParisFrance

Personalised recommendations