Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 705–711 | Cite as

Effective Mass Calculations for Two-dimensional Gas of Dipolar Fermions

Article
  • 104 Downloads

Abstract

We consider a two-dimensional system of ultracold dipolar fermions with dipole moments aligned in the perpendicular direction. We use the static structure factor information from Fermi-Hypernetted-Chain calculations to obtain the effective many-body dipole–dipole interaction and calculate the many-body effective mass of the system within the \(G_{0}W\) approximation to the self-energy. A large cancellation between different contributions to the self-energy results in a weak dependence of the effective mass on the interaction strength over a large range of coupling constants.

Keywords

Dipole–dipole interaction Effective mass \(G_{0}W\) approximation 

Notes

Acknowledgments

B. T. thanks A. L. Subasi for useful discussions. This work is supported in part by TUBITAK and TUBA.

References

  1. 1.
    L.D. Carr, D. Demille, R.V. Krems, J. Ye, New J. Phys. 11, 055049 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    M.A. Baranov, Phys. Rep. 464, 71 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    M.A. Baranov, M. Dalmonte, G. Pupillio, P. Zoller, Chem. Rev. 112, 5012 (2012)CrossRefGoogle Scholar
  4. 4.
    Y. Li, C. Wu, J. Phys. Condens. Matter 26, 493202 (2014)CrossRefGoogle Scholar
  5. 5.
    K. Aikawa, S. Baier, A. Frisch, M. Mark, C. Ravensbergen, F. Ferlaino, Science 345, 1484 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    C.-H. Wu, J.W. Park, P. Ahmadi, S. Will, M.W. Zwierlein, Phys. Rev. Lett. 109, 085301 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    M.-S. Heo, T.T. Wang, C.A. Christensen, T.M. Rvachov, D.A. Cotta, J.-H. Choi, Y.-R. Lee, W. Ketterle, Phys. Rev. A 86, 021602(R) (2012)ADSCrossRefGoogle Scholar
  8. 8.
    J.W. Park, S.A. Will, M.W. Zwierlein, Phys. Rev. Lett. 114, 205302 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    M. Lu, N.Q. Burdick, B.L. Lev, Phys. Rev. Lett. 108, 215301 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    K. Aikawa, A. Frisch, M. Mark, S. Baier, R. Grimm, F. Ferlaino, Phys. Rev. Lett. 112, 010404 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    D. Pines, P. Noziéres, The Theory of Quantum Liquids (W. A. Benjamin Inc, New York, 1966)MATHGoogle Scholar
  12. 12.
    G.F. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005)CrossRefGoogle Scholar
  13. 13.
    L.M. Sieberer, M.A. Baranov, Phys. Rev. A 84, 063633 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    C.-K. Chan, C. Wu, W.-C. Lee, S.Das Sarma, Phys. Rev. A 81, 023602 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    J.P. Kestner, S.Das Sarma, Phys. Rev. A 82, 033608 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Z.-K. Lu, G.V. Shlyapnikov, Phys. Rev. A 85, 023614 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    J.P. Balizot, L. Friman, Nucl. Phys. A 372, 69 (1981)ADSCrossRefGoogle Scholar
  18. 18.
    E. Krotscheck, J. Springer, J. Low Temp. Phys. 132, 281 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    J. Boronat, J. Casulleras, V. Grau, E. Krotscheck, J. Springer, Phys. Rev. Lett. 91, 085302 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    A.L. Fetter, J.D. Walecka, Quantum Theory of the Many-Particle Systems (McGraw-Hill, New York, 1971)Google Scholar
  21. 21.
    S.H. Abedinpour, R. Asgari, B. Tanatar, M. Polini, Ann. Phys. (N.Y.) 340, 25 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    E. Akaturk, B. Tanatar, S.H. Abedinpour, arXiv:1507.06185
  23. 23.
    N. Matveeva, S. Giorgini, Phys. Rev. Lett. 109, 200401 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PhysicsInstitute for Advanced Studies in Basic Sciences (IASBS)ZanjanIran
  2. 2.Department of PhysicsBilkent UniversityAnkaraTurkey

Personalised recommendations