Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 685–691 | Cite as

Specific Heat of Ultracold Fermi Gas with a Uniaxially Anisotropic p-Wave Interaction at the Superfluid Transition Temperature

  • D. Inotani
  • P. van Wyk
  • Y. Ohashi


We theoretically investigate the specific heat at constant volume \(C_\mathrm{V}\) and strong-coupling effects in a Fermi gas with p-wave interaction. In a \(^{40}\)K Fermi gas, a uniaxial anisotropy of a p-wave interaction associated with a p-wave Feshbach resonance is expected as a result of the split of the p-wave Feshbach resonance by a dipole interaction. Including this, as well as pairing fluctuations, we show that \(C_\mathrm{V}\) is significantly affected by this anisotropy in the strong-coupling regime. We also discuss the physical origin of this effect. Our results would contribute to the further understanding of an ultracold p-wave Fermi gas.


Ultracold Fermi gas p-Wave superfluid Specific heat 



This work was supported by KiPAS project in Keio University. DI was supported by Grant-in-Aid for Young Scientists (B) (No. 16K17773) from JSPS in Japan. YO was supported by Grant-in-Aid for Scientific research from MEXT and JSPS in Japan (Nos. 15H00840, 15K00178, 16K05503).


  1. 1.
    C.A. Regal, C. Ticknor, J.L. Bohn, D.S. Jin, Phys. Rev. Lett. 90, 053201 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    C. Ticknor, C.A. Regal, D.S. Jin, J.L. Bohn, Phys. Rev. A 69, 042712 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    J. Zhang, E.G.M. van Kempen, T. Bourdel, L. Khaykovich, J. Cubizolles, F. Chevy, M. Teichmann, L. Tarruell, S.J.J.M.F. Kokkelmans, C. Salomon, Phys. Rev. A 70, 030702(R) (2004)ADSCrossRefGoogle Scholar
  4. 4.
    C.H. Schunck, M.W. Zwierlein, C.A. Stan, S.M.F. Raupach, W. Ketterle, A. Simoni, E. Tiesinga, C.J. Williams, P.S. Julienne, Phys. Rev. A 71, 045601 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Inada, M. Horikoshi, S. Nakajima, M. Kuwata-Gonokami, M. Ueda, T. Mukaiyama, Phys. Rev. Lett. 101, 100401 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    J. Fuchs, C. Ticknor, P. Dyke, G. Veeravalli, E. Kuhnle, W. Rowlands, P. Hannaford, C.J. Vale, Phys. Rev. A 77, 053616 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    V. Gurarie, L. Radzihovsky, A.V. Andreev, Phys. Rev. Lett. 94, 230403 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    V. Gurarie, L. Radzihovsky, Ann. Phys. 322, 2 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Ohashi, Phys. Rev. Lett. 94, 050403 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    M. Iskin, C.A.R. Sá de Melo, Phys. Rev. Lett. 96, 040402 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    C.-H. Cheng, S.-K. Yip, Phys. Rev. Lett. 95, 070404 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    C.-H. Cheng, S.-K. Yip, Phys. Rev. B 73, 064517 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    T. Mizushima, M. Ichioka, K. Machida, Phys. Rev. Lett. 101, 150409 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    D. Inotani, R. Watanabe, M. Sigrist, Y. Ohashi, Phys. Rev. A 85, 053628 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    D. Inotani, Y. Ohashi, Phys. Rev. A 92, 063638 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    M.J.H. Ku, A.T. Sommer, L.W. Cheuk, M.W. Zwierlein, Science 335, 563 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    M. Horikoshi, S. Nakajima, M. Ueda, T. Mukaiyama, Science 327, 442 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    C. Sanner, E.J. Su, A. Keshet, W. Huang, J. Gillen, R. Gommers, W. Ketterle, Phys. Rev. Lett. 106, 010402 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    P. van Wyk, H. Tajima, R. Hanai, Y. Ohashi, Phys. Rev. A 93, 013621 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    P. Nozières, S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Science and TechnologyKeio UniversityYokohamaJapan

Personalised recommendations