Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 727–733 | Cite as

Magnetization Process and Magnetocaloric Effect of the Spin-1/2 XXZ Heisenberg Cuboctahedron

  • Katarína Karľová
  • Jozef Strečka


Magnetic properties of the spin-1/2 XXZ Heisenberg cuboctahedron are examined using exact numerical diagonalization depending on a relative strength of the exchange anisotropy. While the Ising cuboctahedron exhibits in a low-temperature magnetization curve only one-third magnetization plateau, the XXZ Heisenberg cuboctahedron displays another four intermediate plateaux at zero, one-sixth, one-half and two-thirds of the saturation magnetization. The novel magnetization plateaux generally extend over a wider range of magnetic fields with increasing of a quantum (xy) part of the XXZ exchange interaction. It is shown that the XXZ Heisenberg cuboctahedron exhibits in the vicinity of all magnetization jumps anomalous thermodynamic behavior accompanied by an enhanced magnetocaloric effect.


Heisenberg cuboctahedron Magnetization plateaux Magnetocaloric properties 


  1. 1.
    C. Lacroix, Ph Mendels, F. Mila, Introduction to Frustrated Magnetism (Springer, Heidelberg, 2011)CrossRefGoogle Scholar
  2. 2.
    A. Furrer, O. Waldmann, Rev. Mod. Phys. 85, 367–420 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    J.E. Greedan, J. Mater. Chem. 11, 37–53 (2001)CrossRefGoogle Scholar
  4. 4.
    G. Misguich, Quantum spin liquids, in Exact Methods in Low-Dimensional Statistical Physics and Quantum Computing, ed. by J. Jacobsen, S. Ouvry, V. Pasquier, D. Serban, L.F. Cugliandolo (Oxford University Press, Oxford, 2008)Google Scholar
  5. 5.
    Y. Zhou, K. Kanoda, T.-K. Ng, preprint. arxiv: 1607.03228
  6. 6.
    I. Rousochatzakis, A.M. Läuchli, F. Mila, Phys. Rev. B 77, 094420 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    R. Schmidt, J. Richter, J. Schnack, J. Magn. Magn. Mater. 295, 164–167 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    J. Schnack, H.-J. Schmidt, J. Richter, J. Schulenburg, Eur. Phys. J. B 24, 475–481 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    J. Schnack, Dalton Trans. 39, 4677 (2010)CrossRefGoogle Scholar
  10. 10.
    A.J. Blake, R.O. Gould, C.M. Grant, P.E.Y. Milne, S. Parsons, R.E.P. Winpenny, J. Chem. Soc. Dalton Trans. 485–495 (1997)Google Scholar
  11. 11.
    J. Schnack, R. Schmidt, J. Richter, Phys. Rev. B 76, 054413 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    A. Honecker, M.E. Zhitomirsky, J. Phys. Conf. Ser. 145, 012082 (2009)CrossRefGoogle Scholar
  13. 13.
    J. Schulenburg, A. Honecker, J. Schnack, J. Richter, H.-J. Schmidt, Phys. Rev. Lett. 88, 167207 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    J. Schnack, R. Schnalle, Polyhedron 28, 1620–1623 (2009)CrossRefGoogle Scholar
  15. 15.
    T. Moriya, Phys. Rev. 120, 91 (1960)ADSCrossRefGoogle Scholar
  16. 16.
    L.J. de Jough, A.R. Miedema, Adv. Phys. 23, 1 (1974)ADSCrossRefGoogle Scholar
  17. 17.
    B. Bauer, L.D. Carr, H.G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S.V. Isakov, D. Koop, P.N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawlowski, J.D. Picon, L. Pollet, E. Santos, V.W. Scarola, U. Schollwöck, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M.L. Wall, P. Werner, S. Wessel, J. Stat. Mech. Theor. Exp. 2011, P05001 (2011)Google Scholar
  18. 18.
    J. Strečka, K. Karľová, T. Madaras, Phys. B 466, 76–85 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Physics, Faculty of ScienceP. J. Šafárik UniversityKošiceSlovak Republic

Personalised recommendations