Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 459–467 | Cite as

Nonlinear Ultrasound Propagation in Solid \(^4\hbox {He}\) Compared with Shear Modulus Experiments

Article

Abstract

Ultrasound attenuation (\(\alpha \)) and velocity (V) at 9.6 MHz are measured in polycrystalline hcp \(^4\hbox {He}\). The ultrasound signal above 200 mK is linear and understood in terms of resonant vibration of dislocation segments pinned between network nodes with an average pinning length of 3.7 \(\mu \hbox {m}\), much shorter than 59 \(\mu \hbox {m}\) estimated from a shear modulus measurement. Dramatic changes in \(\alpha \) and V are observed below 200 mK. The changes are strongly dependent on temperature and are nonlinear and hysteretic. These effects result from pinning of dislocations by \(^3\hbox {He}\) impurities (nominal concentration of 0.3 ppm). The dislocation damping constant due to thermal phonons, the binding energy between dislocation and \(^3\hbox {He}\), and the average network pinning length obtained from the ultrasound data are compared with those from the shear modulus experiments.

Keywords

Solid helium Dislocation Pinning Ultrasound 

Notes

Acknowledgments

The authors are grateful to John Goodkind for providing us with the ultrasound equipment. This research was supported by NSF DMR1005325.

References

  1. 1.
    J. Day, J. Beamish, Low-temperature shear modulus changes in solid \(^4\text{ He }\) and connection to supersolidity. Nature 450, 853 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    E. Kim, M.H.W. Chan, Probable observation of a supersolid helium phase. Nature 427, 225 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    E. Kim, M.H.W. Chan, Observation of superflow in solid helium. Science 305, 1941 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    J. Day, O. Syshchenko, J. Beamish, Intrinsic and dislocation-induced elastic behavior of solid helium. Phys. Rev. B 79, 214524 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    J. Day, O. Syshchenko, J. Beamish, Nonlinear elastic response in solid helium: critical velocity or strain? Phys. Rev. Lett. 104, 075302 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    X. Rojas, A. Haziot, V. Bapst, S. Balibar, H.J. Maris, Anomalous softening of \(^4{\rm He}\) crystals. Phys. Rev. Lett. 105, 145302 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    A. Haziot, X. Rojas, A.D. Fefferman, J.R. Beamish, S. Balibar, Giant plasticity of a quantum crystal. Phys. Rev. Lett. 110, 035301 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    A. Haziot, A.D. Fefferman, J.R. Beamish, S. Balibar, Dislocation densities and lengths in solid \(^4{\rm He}\) from elasticity measurements. Phys. Rev. B 87, 060509 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    A. Haziot, A.D. Fefferman, F. Souris, J.R. Beamish, H.J. Maris, S. Balibar, Critical dislocation speed in helium-4 crystals. Phys. Rev. B 88, 014106 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    A.D. Fefferman, F. Souris, A. Haziot, J.R. Beamish, S. Balibar, Dislocation networks in \(^4\text{ He }\) crystals. Phys. Rev. B 89, 014105 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    J.R. Beamish, A.D. Fefferman, A. Haziot, X. Rojas, S. Balibar, Elastic effects in torsional oscillators containing solid helium. Phys. Rev. B 85, 180501 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    D.Y. Kim, M.H.W. Chan, Absence of supersolidity in solid helium in porous vycor glass. Phys. Rev. Lett. 109, 155301 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    B. Hein, J.M. Goodkind, I. Iwasa, H. Kojima, Simultaneous measurement of torsional oscillation and ultrasound propagation in solid \(^4\text{ He }\) at low temperatures. J. Low Temp. Phys. 171, 322 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    I. Iwasa, J.M. Goodkind, H. Kojima, Anomalous nonlinear attenuation of ultrasound in solid \(^4\text{ He }\) in a torsional oscillator below 200 mK. J. Phys. Conf. Ser. 568, 012005 (2014)CrossRefGoogle Scholar
  15. 15.
    I. Iwasa, K. Araki, H. Suzuki, Temperature and frequency dependence of the sound velocity in hcp \(^4\text{ He }\) crystals. J. Phys. Soc. Jpn. 46, 1119 (1979)ADSCrossRefGoogle Scholar
  16. 16.
    A. Granato, K. Lücke, Theory of mechanical damping due to dislocations. J. Appl. Phys. 27, 583 (1956)ADSCrossRefMATHGoogle Scholar
  17. 17.
    I. Iwasa, H. Suzuki, Sound velocity and attenuation in hcp \(^4\text{ He }\) crystals containing \(^3\text{ He }\) impurities. J. Phys. Soc. Jpn. 49, 1722 (1980)ADSCrossRefGoogle Scholar
  18. 18.
    T. Ninomiya, Frictional force acting on a dislocation - fluttering mechanism -. J. Phys. Soc. Jpn. 36, 399 (1974)ADSCrossRefGoogle Scholar
  19. 19.
    I. Iwasa, Switching of dislocations in solid helium between pinned and unpinned states in the torsional oscillator experiments. J. Low Temp. Phys. 171, 30 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    F. Souris, A.D. Fefferman, H.J. Maris, V. Dauvois, P. Jean-Baptiste, J.R. Beamish, S. Balibar, Movement of dislocations dressed with \(^3\text{ He }\) impurities in \(^4\text{ He }\) crystals. Phys. Rev. B 90, 180103 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Kanagawa UniversityKanagawaJapan
  2. 2.Rutgers UniversityNew BrunswickUSA

Personalised recommendations