Ultra-High Q Acoustic Resonance in Superfluid \(^4\)He

Abstract

We report the measurement of the acoustic quality factor of a gram-scale, kilohertz-frequency superfluid resonator, detected through the parametric coupling to a superconducting niobium microwave cavity. For temperatures between 400 mK and 50 mK, we observe a \(T^{-4}\) temperature dependence of the quality factor, consistent with a 3-phonon dissipation mechanism. We observe Q factors up to \(1.4\times 10^8\), consistent with the dissipation due to dilute \(^3\)He impurities, and expect that significant further improvements are possible. These experiments are relevant to exploring quantum behavior and decoherence of massive macroscopic objects, the laboratory detection of continuous gravitational waves from pulsars, and the probing of possible limits to physical length scales.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    L. De Lorenzo, K. Schwab, New J. Phys. 16, 113020 (2014)

    Article  Google Scholar 

  2. 2.

    G.I. Harris, D.L. McAuslan, E. Sheridan, Y. Sachkou, C. Baker, W.P. Bowen, arXiv:1506.04542 (2015)

  3. 3.

    A.D. Kashkanova, A.B. Shkarin, C.D. Brown, N.E. Flowers-Jacobs, L. Childress, S.W. Hoch, L. Hohmann, K. Ott, J. Reichel, J.G.E. Harris, arXiv:1602.05640 (2016)

  4. 4.

    A.D. OConnell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J.M. Martinis, A.N. Cleland, Nature 464, 697 (2010)

    ADS  Article  Google Scholar 

  5. 5.

    E.E. Wollman, C.U. Lei, A.J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A.A. Clerk, K.C. Schwab, Science 349, 952 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    R. Riedinger, S. Hong, R.A. Norte, J.A. Slater, J. Shang, A.G. Krause, V. Anant, M. Aspelmeyer, S. Groblacher, Nature 530, 313 (2016)

    ADS  Article  Google Scholar 

  7. 7.

    I. Pikovski, M.R. Vanner, M. Aspelmeyer, M.S. Kim, C. Brukner, Nat. Phys. 8, 393 (2012)

    Article  Google Scholar 

  8. 8.

    S. Singh, L.A. De Lorenzo, I. Pikovski, K. Schwab (2016) (to be published)

  9. 9.

    R. Penrose, Math. Phys. 2000, 266 (2000)

    Google Scholar 

  10. 10.

    G.C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D 34, 470 (1986)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    G.C. Ghirardi, P. Pearle, A. Rimini, Phys. Rev. A 42, 78 (1990)

    ADS  MathSciNet  Article  Google Scholar 

  12. 12.

    I.C. Percival, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 447 (The Royal Society, 1994), pp. 189–209

  13. 13.

    D.I. Fivel, Phys. Rev. A 56, 146 (1997)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    L. Diosi, Phys. Rev. A 40, 1165 (1989)

    ADS  Article  Google Scholar 

  15. 15.

    H.J. Maris, Rev. Mod. Phys. 49, 341 (1977)

    ADS  Article  Google Scholar 

  16. 16.

    B.M. Abraham, Y. Eckstein, J.B. Ketterson, M. Kuchnir, J. Vignos, Phys. Rev. 181, 347 (1968)

    ADS  Article  Google Scholar 

  17. 17.

    B.M. Abraham, Y. Eckstein, J.B. Ketterson, M. Kuchnir, P.R. Roach, Phys. Rev. A 1, 250 (1970)

    ADS  Article  Google Scholar 

  18. 18.

    J. Jäckle, K.W. Kehr, Phys. Rev. Lett. 27, 654 (1971)

    ADS  Article  Google Scholar 

  19. 19.

    D. Rugar, J.S. Foster, Phys. Rev. B 30, 2595 (1984)

    ADS  Article  Google Scholar 

  20. 20.

    T. Roucheleau, T. Ndukum, C. Macklin, J. Hertzberg, A. Clerk, K. Schwab, Nature 463, 72 (2010)

    ADS  Article  Google Scholar 

  21. 21.

    F. Pobell, Matter and Methods at Low Temperatures, 3rd edn. (Springer, Berlin, 2007)

    Google Scholar 

  22. 22.

    H. Kerscher, M. Niemetz, W. Schoepe, J. Low Temp. Phys. 124, 163 (2001)

    ADS  Article  Google Scholar 

  23. 23.

    L. De Lorenzo, K. Schwab (to be published)

  24. 24.

    J. Bardeen, G. Baym, D. Pines, Phys. Rev. Lett. 17, 372 (1966)

    ADS  Article  Google Scholar 

  25. 25.

    P.V.E. McClintock, Cryogenics 18, 201 (1978)

    ADS  Article  Google Scholar 

  26. 26.

    W. Hartung, J. Bierwagen, S. Bricker, C. Compton, T. Grimm, M. Johnson, D. Meidlinger, D. Pendell, J. Popielarski, L. Saxton, R.C. York, Proceedings of LINAC 2006 (2006), pp. 755–757

  27. 27.

    N. Bruckner, S. Backhaus, R. Packard, in 21st International Conference on Low Temperature Physics (LT 21), vol. 46, pp. 2741–2742 (1996)

  28. 28.

    V.B. Braginsky, V.P. Mitrofanov, V.I. Panov, Systems with Small Dissipation (The University of Chicago Press, Chicago, 1985)

    Google Scholar 

  29. 29.

    E.N. Ivanov, M.E. Tobar, P.J. Turner, B.G. Blair, Rev. Sci. Instr. 64, 1905 (1993)

    ADS  Article  Google Scholar 

  30. 30.

    P. Hendry, P.V. McClintock, Cryogenics 27, 131 (1987)

    ADS  Article  Google Scholar 

  31. 31.

    E.N. Ivanov, M.E. Tobar, R.A. Woode, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1526 (1998)

    Article  Google Scholar 

  32. 32.

    K.S. Bagdasarov, V.B. Braginsky, V.P. Mitrofanov, V.S. Shiyan, Vestn. Mosk. Univ. Seriya Fiz Astron. 18, 98 (1977)

    ADS  Google Scholar 

  33. 33.

    D.F. McGuigan, C.C. Lam, R.Q. Gram, A.W. Hoffman, D.H. Douglass, H.W. Gutche, J. Low Temp. Phys. 30, 621 (1978)

    ADS  Article  Google Scholar 

  34. 34.

    M. Goryachev, D.L. Creedon, E.N. Ivanov, S. Galliou, R. Bourquin, M.E. Tobar, Appl. Phys. Lett 100, 243504 (2012)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

We acknowledge funding provided by the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center (NSF IQIM-1125565) with support of the Gordon and Betty Moore Foundation (GBMF-1250) NSF DMR-1052647, and DARPA-QUANTUM HR0011-10-1-0066. L.D. acknowledges support from the NSF GRFP under Grant No. DGE-1144469.

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. C. Schwab.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Lorenzo, L.A., Schwab, K.C. Ultra-High Q Acoustic Resonance in Superfluid \(^4\)He. J Low Temp Phys 186, 233–240 (2017). https://doi.org/10.1007/s10909-016-1674-x

Download citation

Keywords

  • Acoustic Mode
  • Microwave Cavity
  • Dilution Refrigerator
  • Heat Leak
  • Kapitza Resistance