Advertisement

Journal of Low Temperature Physics

, Volume 186, Issue 3–4, pp 233–240 | Cite as

Ultra-High Q Acoustic Resonance in Superfluid \(^4\)He

  • L. A. De Lorenzo
  • K. C. SchwabEmail author
Article

Abstract

We report the measurement of the acoustic quality factor of a gram-scale, kilohertz-frequency superfluid resonator, detected through the parametric coupling to a superconducting niobium microwave cavity. For temperatures between 400 mK and 50 mK, we observe a \(T^{-4}\) temperature dependence of the quality factor, consistent with a 3-phonon dissipation mechanism. We observe Q factors up to \(1.4\times 10^8\), consistent with the dissipation due to dilute \(^3\)He impurities, and expect that significant further improvements are possible. These experiments are relevant to exploring quantum behavior and decoherence of massive macroscopic objects, the laboratory detection of continuous gravitational waves from pulsars, and the probing of possible limits to physical length scales.

Keywords

Acoustic Mode Microwave Cavity Dilution Refrigerator Heat Leak Kapitza Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge funding provided by the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center (NSF IQIM-1125565) with support of the Gordon and Betty Moore Foundation (GBMF-1250) NSF DMR-1052647, and DARPA-QUANTUM HR0011-10-1-0066. L.D. acknowledges support from the NSF GRFP under Grant No. DGE-1144469.

References

  1. 1.
    L. De Lorenzo, K. Schwab, New J. Phys. 16, 113020 (2014)CrossRefGoogle Scholar
  2. 2.
    G.I. Harris, D.L. McAuslan, E. Sheridan, Y. Sachkou, C. Baker, W.P. Bowen, arXiv:1506.04542 (2015)
  3. 3.
    A.D. Kashkanova, A.B. Shkarin, C.D. Brown, N.E. Flowers-Jacobs, L. Childress, S.W. Hoch, L. Hohmann, K. Ott, J. Reichel, J.G.E. Harris, arXiv:1602.05640 (2016)
  4. 4.
    A.D. OConnell, M. Hofheinz, M. Ansmann, R.C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J.M. Martinis, A.N. Cleland, Nature 464, 697 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    E.E. Wollman, C.U. Lei, A.J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A.A. Clerk, K.C. Schwab, Science 349, 952 (2015)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    R. Riedinger, S. Hong, R.A. Norte, J.A. Slater, J. Shang, A.G. Krause, V. Anant, M. Aspelmeyer, S. Groblacher, Nature 530, 313 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    I. Pikovski, M.R. Vanner, M. Aspelmeyer, M.S. Kim, C. Brukner, Nat. Phys. 8, 393 (2012)CrossRefGoogle Scholar
  8. 8.
    S. Singh, L.A. De Lorenzo, I. Pikovski, K. Schwab (2016) (to be published)Google Scholar
  9. 9.
    R. Penrose, Math. Phys. 2000, 266 (2000)Google Scholar
  10. 10.
    G.C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D 34, 470 (1986)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    G.C. Ghirardi, P. Pearle, A. Rimini, Phys. Rev. A 42, 78 (1990)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    I.C. Percival, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 447 (The Royal Society, 1994), pp. 189–209Google Scholar
  13. 13.
    D.I. Fivel, Phys. Rev. A 56, 146 (1997)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    L. Diosi, Phys. Rev. A 40, 1165 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    H.J. Maris, Rev. Mod. Phys. 49, 341 (1977)ADSCrossRefGoogle Scholar
  16. 16.
    B.M. Abraham, Y. Eckstein, J.B. Ketterson, M. Kuchnir, J. Vignos, Phys. Rev. 181, 347 (1968)ADSCrossRefGoogle Scholar
  17. 17.
    B.M. Abraham, Y. Eckstein, J.B. Ketterson, M. Kuchnir, P.R. Roach, Phys. Rev. A 1, 250 (1970)ADSCrossRefGoogle Scholar
  18. 18.
    J. Jäckle, K.W. Kehr, Phys. Rev. Lett. 27, 654 (1971)ADSCrossRefGoogle Scholar
  19. 19.
    D. Rugar, J.S. Foster, Phys. Rev. B 30, 2595 (1984)ADSCrossRefGoogle Scholar
  20. 20.
    T. Roucheleau, T. Ndukum, C. Macklin, J. Hertzberg, A. Clerk, K. Schwab, Nature 463, 72 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    F. Pobell, Matter and Methods at Low Temperatures, 3rd edn. (Springer, Berlin, 2007)CrossRefGoogle Scholar
  22. 22.
    H. Kerscher, M. Niemetz, W. Schoepe, J. Low Temp. Phys. 124, 163 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    L. De Lorenzo, K. Schwab (to be published)Google Scholar
  24. 24.
    J. Bardeen, G. Baym, D. Pines, Phys. Rev. Lett. 17, 372 (1966)ADSCrossRefGoogle Scholar
  25. 25.
    P.V.E. McClintock, Cryogenics 18, 201 (1978)ADSCrossRefGoogle Scholar
  26. 26.
    W. Hartung, J. Bierwagen, S. Bricker, C. Compton, T. Grimm, M. Johnson, D. Meidlinger, D. Pendell, J. Popielarski, L. Saxton, R.C. York, Proceedings of LINAC 2006 (2006), pp. 755–757Google Scholar
  27. 27.
    N. Bruckner, S. Backhaus, R. Packard, in 21st International Conference on Low Temperature Physics (LT 21), vol. 46, pp. 2741–2742 (1996)Google Scholar
  28. 28.
    V.B. Braginsky, V.P. Mitrofanov, V.I. Panov, Systems with Small Dissipation (The University of Chicago Press, Chicago, 1985)Google Scholar
  29. 29.
    E.N. Ivanov, M.E. Tobar, P.J. Turner, B.G. Blair, Rev. Sci. Instr. 64, 1905 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    P. Hendry, P.V. McClintock, Cryogenics 27, 131 (1987)ADSCrossRefGoogle Scholar
  31. 31.
    E.N. Ivanov, M.E. Tobar, R.A. Woode, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1526 (1998)CrossRefGoogle Scholar
  32. 32.
    K.S. Bagdasarov, V.B. Braginsky, V.P. Mitrofanov, V.S. Shiyan, Vestn. Mosk. Univ. Seriya Fiz Astron. 18, 98 (1977)ADSGoogle Scholar
  33. 33.
    D.F. McGuigan, C.C. Lam, R.Q. Gram, A.W. Hoffman, D.H. Douglass, H.W. Gutche, J. Low Temp. Phys. 30, 621 (1978)ADSCrossRefGoogle Scholar
  34. 34.
    M. Goryachev, D.L. Creedon, E.N. Ivanov, S. Galliou, R. Bourquin, M.E. Tobar, Appl. Phys. Lett 100, 243504 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Applied PhysicsCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations