Journal of Low Temperature Physics

, Volume 187, Issue 5–6, pp 398–404 | Cite as

Influence of \(^4\)He Coverage on Resonance Properties of a Quartz Tuning Fork Immersed in Liquid \(^3\)He

  • V. V. Dmitriev
  • A. A. Soldatov
  • A. N. Yudin


Nowadays quartz tuning forks are commonly used for temperature measurements in experiments with liquid (both normal and superfluid) \(^3\)He. In most of the experiments pure \(^3\)He is used, but in some cases \(^4\)He is added in order to cover surfaces by a few monolayers of \(^4\)He. We report here measurements of influence of different \(^4\)He coverages on the fork resonance properties at different pressures. We have found that the presence of even small amounts of paramagnetic \(^3\)He on the fork surface may essentially change the temperature calibration.


Quartz tuning fork Liquid \(^3\)He \(^4\)He coverage 



We are grateful to I.A. Fomin and V.I. Marchenko for useful discussions. This work was supported in part by RFBR Grant 16-02-00349, Russian Science Support Foundation, and the Basic Research Program of the Presidium of Russian Academy of Sciences.


  1. 1.
    D.O. Clubb, O.V.L. Buu, R.M. Bowley, R. Nyman, J.R. Owers-Bradley, J. Low Temp. Phys. 136, 1 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    R. Blaauwgeers, M. Blazkova, M. Clovecko, V.B. Eltsov, R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, D.E. Zmeev, J. Low Temp. Phys. 146, 537 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    D.C. Carless, H.E. Hall, J.R. Hook, J. Low Temp. Phys. 50, 583 (1982)ADSCrossRefGoogle Scholar
  4. 4.
    D.C. Carless, H.E. Hall, J.R. Hook, J. Low Temp. Phys. 50, 605 (1982)Google Scholar
  5. 5.
    A. Schuhl, S. Maegava, M.W. Meisel, M. Chapellier, Phys. Rev. Lett. 36, 6811 (1987)ADSGoogle Scholar
  6. 6.
    M.R. Freeman, R.C. Richardson, Phys. Rev. B 41, 11011 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    S.M. Tholen, J.M. Parpia, Phys. Rev. Lett. 67, 334 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    S.M. Tholen, J.M. Parpia, Phys. Rev. B 47, 319 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    S.M. Tholen, J.M. Parpia, Phys. Rev. Lett. 68, 2810 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    D. Kim, M. Nakagawa, O. Ishikawa, T. Hata, T. Kodama, H. Kojima, Phys. Rev. Lett. 71, 1581 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    S. Murakawa, M. Wasai, K. Akiyama, Y. Wada, Y. Tamura, R. Nomura, Y. Okuda, Phys. Rev. Lett. 108, 025302 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    V.V. Dmitriev, D.A. Krasnikhin, N. Mulders, A.A. Senin, G.E. Volovik, A.N. Yudin, JETP Lett. 91, 599 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    A.I. Ahonen, M. Krusius, M.A. Paalanen, J. Low Temp. Phys. 25, 421 (1976)ADSCrossRefGoogle Scholar
  14. 14.
    V.E. Asadchikov, RSh Askhadullin, V.V. Volkov, V.V. Dmitriev, N.K. Kitaeva, P.N. Martynov, A.A. Osipov, A.A. Senin, A.A. Soldatov, D.I. Chekrygina, A.N. Yudin, JETP Lett. 101, 556 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    V.V. Dmitriev, I.V. Kosarev, D.V. Ponarin, R. Scheibel, J. Low Temp. Phys. 113, 945 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    H. Godfrin, G. Frossati, D. Thoulouze, M. Chapellier, W. Clark, J. Phys. 8(C–6), 287 (1978)Google Scholar
  17. 17.
    P.C. Hammel, R.C. Richardson, Phys. Rev. Lett. 52, 1441 (1984)ADSCrossRefGoogle Scholar
  18. 18.
    D.T. Sprague, T.M. Haard, J.B. Kycia, M.R. Rand, Y. Lee, P.J. Hamot, W.P. Halperin, Phys. Rev. Lett. 77, 4568 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    D.T. Sprague, T.M. Haard, J.B. Kycia, M.R. Rand, Y. Lee, P.J. Hamot, W.P. Halperin, Phys. Rev. Lett. 75, 661 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.P.L. Kapitza Institute for Physical Problems of RASMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations