Skip to main content
Log in

Ab Initio Study of Deformation Influence on the Electronic Properties of Graphene Structures Containing One-Dimensional Topological Defects

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The band structures of single and bilayer graphene with one-dimensional topological defects were calculated along the defect line, and appearance of the flat band near the Fermi level was observed. In addition, the influence of deformation (compression/expansion) on the flat band was studied. It was shown that compression across the grain boundary leads to disappearance of the flat band near the Fermi level, while the stretching along this direction does not significantly change the band structure. However, neither compression nor stretching along the grain boundary destroys the flat band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Materials Design 2014 MedeA version 2.16 (Angel Fire, NM: Materials Design).

References

  1. V. Ginzburg, Phys. Lett. 13(2), 101 (1964)

    Article  ADS  Google Scholar 

  2. K. Antonowicz, Nature 247, 358 (1974)

    Article  ADS  Google Scholar 

  3. K. Antonowich, Phys. Status Solidi (a) 28(2), 497 (1975)

    Article  ADS  Google Scholar 

  4. N. Hannay, T. Geballe, B. Matthias et al., Phys. Rev. Lett. 14(7), 225 (1965)

    Article  ADS  Google Scholar 

  5. A. Hebard, M. Rosseinky, R. Haddon et al., Nature 350, 600 (1991)

    Article  ADS  Google Scholar 

  6. K. Tanigaki, T. Ebbesen, S. Saito et al., Nature 352(6332), 222 (1991)

    Article  ADS  Google Scholar 

  7. Z. Tang, L. Zhang, N. Wang et al., Science 292(5526), 2462 (2001)

    Article  ADS  Google Scholar 

  8. G. Zhao, Y. Wang (2001). arXiv:cond-mat/0111268

  9. I. Takesue, J. Haruyama, N. Kobayashi et al., Phys. Rev. Lett. 96(5), 057001 (2006)

    Article  ADS  Google Scholar 

  10. R.R. Da Silva, J. Torres, Y. Kopelevich, Phys. Rev. Lett. 87(14), 147001 (2001)

    Article  ADS  Google Scholar 

  11. S. Moehlecke, Y. Kopelevich, M. Maple, Phys. Rev. B 69(13), 134519 (2004)

    Article  ADS  Google Scholar 

  12. T. Scheike, W. Böhlmann, P. Esquinazi et al., Adv. Mater. 24(43), 5826 (2012)

    Article  Google Scholar 

  13. T.T. Heikkilä, N.B. Kopnin, G.E. Volovik, JETP Lett. 94(3), 233 (2011)

    Article  ADS  Google Scholar 

  14. M.M. Ugeda, I. Brihuega, F. Guinea et al., Phys. Rev. Lett. 104(9), 096804 (2010)

    Article  ADS  Google Scholar 

  15. E. Tang, J.W. Mei, X.G. Wen, Phys. Rev. Lett. 106(23), 236802 (2011)

    Article  ADS  Google Scholar 

  16. K. Sun, Z. Gu, H. Katsura et al., Phys. Rev. Lett. 106(23), 236803 (2011)

    Article  ADS  Google Scholar 

  17. Z.X. Shen, D.S. Dessau, Phys. Rep. 253(1), 1 (1995)

    Article  ADS  Google Scholar 

  18. R. Nandkishore, L. Levitov, A. Chubukov, Nat. Phys. 8(2), 158 (2012)

    Article  Google Scholar 

  19. B. Uchoa, A.C. Neto, Phys. Rev. Lett. 98(14), 146801 (2007)

    Article  ADS  Google Scholar 

  20. N. Kopnin, T. Heikkilä, G. Volovik, Phys. Rev. B 83(22), 220503 (2011)

    Article  ADS  Google Scholar 

  21. J. González, F. Guinea, M. Vozmediano, Phys. Rev. B 63(13), 134421 (2001)

    Article  ADS  Google Scholar 

  22. J. Bardeen, L. Cooper, J. Schrieffer, Phys. Rev. 108(5), 1175 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  23. N. Kopnin, M. Ijäs, A. Harju, T. Heikkilä, Phys. Rev. B 87(14), 140503 (2013)

    Article  ADS  Google Scholar 

  24. L. Feng, X. Lin, L. Meng et al., Appl. Phys. Lett. 101(11), 113113 (2012)

    Article  ADS  Google Scholar 

  25. W. Yan, M. Liu, R.F. Dou et al., Phys. Rev. Lett. 109(12), 126801 (2012)

    Article  ADS  Google Scholar 

  26. G. Kresse, J. Furthmüller, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  27. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  28. Y. Wang, Y. Huang, Y. Song et al., Nano Lett. 9(1), 220 (2008)

    Article  ADS  Google Scholar 

  29. M. Vozmediano, M. Lopez-Sancho, T. Stauber, F. Guinea, Phys. Rev. B 72(15), 155121 (2005)

    Article  ADS  Google Scholar 

  30. S.-M. Choi, S.-H. Jhi, Y.-W. Son, Phys. Rev. B 81, 081407(R) (2010)

    Article  ADS  Google Scholar 

  31. J.-H. Wong, B.-R. Wu, M.-F. Lin, J. Phys. Chem. C 116, 8271 (2012)

    Article  Google Scholar 

  32. E. Tang, L. Fu, Nat. Phys. 10, 964 (2014)

    Article  Google Scholar 

  33. A. Zandiatashbar, G.-H. Lee, S.J. An et al., Nat. Commun. 5, 3186 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work was supported by Russian Government Program of Competitive Growth of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Valishina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valishina, A.A., Lysogorskiy, Y.V., Nedopekin, O.V. et al. Ab Initio Study of Deformation Influence on the Electronic Properties of Graphene Structures Containing One-Dimensional Topological Defects. J Low Temp Phys 185, 712–716 (2016). https://doi.org/10.1007/s10909-016-1664-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1664-z

Keywords

Navigation