Skip to main content
Log in

Influence of the Rashba Effect on the Ground-State Properties of the Fröhlich Bipolaron in a Quantum Dot

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The influence of the Rashba effect on the ground-state properties of the Fröhlich bipolaron in a quantum dot is first studied using the variational method of Pekar type based on the Lee–Low–Pines unitary transformation. The results indicate that, under the condition of strong electron–phonon coupling (coupling strength \(\alpha >6\)), the condition of forming bipolaron in a quantum dot (binding energy \(E_{\mathrm{b}>0} )\) is naturally met; the bipolaron binding energy \(E_\mathrm{b} \) increases with increasing confinement strength of the quantum dot \(\omega _0 \), dielectric constant ratio of medium \(\omega _0\) and electron–phonon coupling strength \(\alpha \) and increases or decreases linearly with increasing Rashba spin–orbit coupling strength \(\alpha _\mathrm{R} \). The bipolaron in quantum dot is in a bound state, and the contribution of the Rashba effect to the ground-state energy consists of \(E(\uparrow \uparrow )\), \(E(\downarrow \downarrow )\) and \(E(\uparrow \downarrow )\), corresponding to three spin states of two electrons as follows, spin-parallel and antiparallel; the absolute value of the ground-state energy increases with increasing \(\eta \) and \(\alpha \) and increases or decreases linearly with increasing \(\alpha _\mathrm{R} \); in the interaction energy \(E_\mathrm{int} \) of the ground-state bipolaron, the electron–phonon coupling energy \(E_{\mathrm{e}-\mathrm{ph}}\) obviously takes a larger ratio than the Rashba spin–orbit coupling energy \(E_{\mathrm{SO}} \), but the electron–phonon coupling and the Rashba spin–orbit coupling influence and infiltrate each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X.M. Dou, X.Y. Chang, B.Q. Sun et al., Appl. Phys. Lett. 95, 221903 (2009)

    Article  ADS  Google Scholar 

  2. Z. Yu, Y. Guo, J. Zheng, F. Chi, Chin. Phys. B 22, 117303 (2013)

    Article  ADS  Google Scholar 

  3. Y.F. Huang, Z.W. Yan, Phys. E 40, 2982 (2008)

    Article  MathSciNet  Google Scholar 

  4. H.Z. Tang, L.X. Zhai, J.J. Liu, Chin. Phys. B 21, 120303 (2012)

    Article  ADS  Google Scholar 

  5. F. Chi, L.L. Sun, Y. Guo, J. Appl. Phys. 116, 164305 (2014)

    Article  ADS  Google Scholar 

  6. A.X. Li, S.Q. Duan, Chin. Phys. B 21, 117201 (2012)

    Article  ADS  Google Scholar 

  7. A.V. Moroz, C.H.W. Barnes, Phys. Rev. B 60, 14272 (1999)

    Article  ADS  Google Scholar 

  8. Q.F. Sun, X.X. Xie, J. Wang, Phys. Rev. B 77, 035327 (2008)

    Article  ADS  Google Scholar 

  9. S. Bandyopadhyay, Phys. Rev. B 61, 13813 (2000)

    Article  ADS  Google Scholar 

  10. E. Tsitsishvili, G.S. Lozano, A.O. Gogolin, Phys. Rev. B 70, 115316 (2004)

    Article  ADS  Google Scholar 

  11. M.S. Kushwaha, J. Appl. Phys. 104, 083714 (2008)

    Article  ADS  Google Scholar 

  12. J.L. Li, Y.X. Li, Chin. Phys. Lett. 27, 057202 (2010)

    Article  ADS  Google Scholar 

  13. H. Hassanabadi, H. Rahimov, S. Zarrinkamar, Few-Body Syst. 52, 87 (2012)

    Article  ADS  Google Scholar 

  14. L.C. Fai, V. Teboul, A. Montei et al., Condens. Matter. Phys. 8, 639 (2005)

    Article  Google Scholar 

  15. J.W. Yin, W.P. Li, Y.F. Yu et al., J. Low Temp. Phys. 163, 53 (2011)

    Article  ADS  Google Scholar 

  16. S.P. Shan, S.H. Chen, J.L. Xiao, J. Low Temp. Phys. 176, 93 (2014)

    Article  ADS  Google Scholar 

  17. X.Q. Zhang, Y.S. Wang, Z. Xu et al., Acta Phys. Sin. 48, 180 (1999). (in Chinese)

    Google Scholar 

  18. J.S. Pan, Phys. Stat. Sol(b) 127, 307 (1985)

    Article  ADS  Google Scholar 

  19. Eerdunchaolu, W. Xin, Phys. B 406, 358 (2011)

  20. P.M. Krishna, S. Mukhopadhyay, A. Chatterjee, Phys. Lett. A. 360, 655 (2007)

    Article  ADS  Google Scholar 

  21. T.D. Lee, F.M. Low, D. Pines, Phys. Rev. 90, 297 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  22. T. Yildirim, A. Ercelebi, J. Phys. Conden. Matt. 3, 1271 (1999)

    Article  ADS  Google Scholar 

  23. J. Adamowski, Phys. Rev. B 39, 3649 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Nature Science Foundation of Hebei Province, China (No. E2013407119), and by the Items of Institution of Higher Education Scientific Research of Hebei Province, China (Nos. ZD20131008, Z2015149 and Z2015219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eerdunchaolu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wuyunqimuge, Zhang, Y., Yin, HW. et al. Influence of the Rashba Effect on the Ground-State Properties of the Fröhlich Bipolaron in a Quantum Dot. J Low Temp Phys 187, 221–231 (2017). https://doi.org/10.1007/s10909-016-1663-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1663-0

Keywords

Navigation