Finite-Size Effects of Surface Tension in Two Segregated BECs Confined by Two Hard Walls

Abstract

The finite-size effects of the surface tension in two segregated Bose–Einstein condensates limited by two hard walls are studied respectively in canonical ensemble and grand canonical ensemble by means of the Gross–Pitaevskii theory in the modified double-parabola approximation. The analytical formulae of surface tensions and their finite-size effects are found together with a new type of long-range forces acting on two walls.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 78, 586 (1997)

    ADS  Article  Google Scholar 

  2. 2.

    D.S. Hall, M.R. Matthews, J.R. Ensher, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 81, 1539 (1998)

    ADS  Article  Google Scholar 

  3. 3.

    D.M. Stamper-Kurn, H.-J. Miesner, A.P. Chikkatur, S. Inouye, J. Stenger, W. Ketterle, Phys. Rev. Lett. 83, 661 (1999)

    ADS  Article  Google Scholar 

  4. 4.

    M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 83, 2498 (1999)

    ADS  Article  Google Scholar 

  5. 5.

    H.-J. Miesner, D.M. Stamper-Kurn, J. Stenger, S. Inouye, A.P. Chikkatur, W. Ketterle, Phys. Rev. Lett. 82, 2228 (1999)

    ADS  Article  Google Scholar 

  6. 6.

    D.J. Mc Carron, H.W. Cho, D.L. Jenkin, M.P. Koppinger, S.L. Cornish, Phys. Rev. A 84, 011603 (R) (2011)

    ADS  Article  Google Scholar 

  7. 7.

    S.B. Papp, J.M. Pino, C.E. Wieman, Phys. Rev. Lett. 101, 040402 (2008)

    ADS  Article  Google Scholar 

  8. 8.

    D.S. Hall, in Emergent Nonlinear Phenomena in Bose–Einstein condensates, ed. by P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-Gonzales (Springer, Berlin, 2008), Chap. 16, p. 307

  9. 9.

    S. Tojo, Y. Taguchi, Y. Masuyama, T. Hayashi, H. Saito, T. Hirano, Phys. Rev. A 82, 033609 (2010)

    ADS  Article  Google Scholar 

  10. 10.

    G. Modugno, M. Modugno, F. Riboli, G. Roati, M. Inguscio, Phys. Rev. Lett. 89, 190404 (2002)

    ADS  Article  Google Scholar 

  11. 11.

    E. Timmermans, Phys. Rev. Lett. 81, 5718 (1998)

    ADS  Article  Google Scholar 

  12. 12.

    P. Ao, S.T. Chui, Phys. Rev. A 58, 4836 (1998)

    ADS  Article  Google Scholar 

  13. 13.

    T.-L. Ho, V.B. Shenoy, Phys. Rev. Lett. 77, 3276 (1996)

    ADS  Article  Google Scholar 

  14. 14.

    A.S. Alexandrov, V.V. Kabanov, J. Phys.: Condens. Matter 14, L327 (2002)

    ADS  Google Scholar 

  15. 15.

    A.A. Svidzinsky, S.T. Chui, Phys. Rev. A 67, 053608 (2003)

    ADS  Article  Google Scholar 

  16. 16.

    A.A. Svidzinsky, S.T. Chui, Phys. Rev. A. 68, 013612 (2003)

    ADS  Article  Google Scholar 

  17. 17.

    R. Navarro, R. Carretero-Gonzalez, P.G. Kevrekidis, Phys. Rev. A 80, 023613 (2009)

    ADS  Article  Google Scholar 

  18. 18.

    S. Gautam, D. Angom, J. Phys. B 43, 095302 (2010)

    ADS  Article  Google Scholar 

  19. 19.

    S. Gautam, D. Angom, Phys. Rev. A 81, 053616 (2010)

    ADS  Article  Google Scholar 

  20. 20.

    Z. Liu, J. Math. Phys. 50, 102104 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    G. Thalhammer, G. Barontini, L. De Sarlo, J. Catani, F. Minardi, M. Inguscio, Phys. Rev. Lett. 100, 210402 (2008)

    ADS  Article  Google Scholar 

  22. 22.

    S. Stellmer, R. Grimm, F. Schreck, Phys. Rev. A 87, 013611 (2013)

    ADS  Article  Google Scholar 

  23. 23.

    B.M. Malomed, D.S. Hall, in Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment, ed. by P.G. Kevredikis, D.J. Frantzeskakis, R. Carretero-Golzalez (Springer, Berlin, 2008), Chaps. 15, 16

  24. 24.

    L. Wen, W.M. Liu, Y. Cai, J.M. Zhang, J. Hu, Phys. Rev. A 85, 043602 (2012)

    ADS  Article  Google Scholar 

  25. 25.

    R.W. Pattinson, T.P. Billam, S.A. Gardiner, D.J. McCarron, H.W. Cho, S.L. Cornish, N.G. Parker, N.P. Proukakis, Phys. Rev. A 87, 013625 (2013)

    ADS  Article  Google Scholar 

  26. 26.

    I.E. Mazets, Phys. Rev. A 65, 033618 (2002)

    ADS  Article  Google Scholar 

  27. 27.

    R.A. Barankov, Phys. Rev. A 66, 013612 (2002)

    ADS  Article  Google Scholar 

  28. 28.

    K. Sasaki, N. Suzuki, D. Akamatsu, H. Saito, PRA 80, 063611 (2009)

    ADS  Article  Google Scholar 

  29. 29.

    H. Takeuchi, N. Suzuki, K. Kasamatsu, H. Saito, M. Tsubota, Phys. Rev. B 81, 094517 (2010)

    ADS  Article  Google Scholar 

  30. 30.

    D. Kobyakov, V. Bychkov, E. Lundh, A. Bezett, V. Akkerman, M. Marklund, Phys. Rev. A 83, 043623 (2011)

    ADS  Article  Google Scholar 

  31. 31.

    A. Bezett, V. Bychkov, E. Lundh, D. Kobyakov, M. Marklund, Phys. Rev. A 82, 043608 (2010)

    ADS  Article  Google Scholar 

  32. 32.

    F.V. Pepe, P. Facchi, G. Florio, S. Pascazio, Phys. Rev. A 86, 023629 (2012)

    ADS  Article  Google Scholar 

  33. 33.

    B. Van Schaeybroeck, Phys. Rev. A 78, 023624 (2008)

    ADS  Article  Google Scholar 

  34. 34.

    B. Van Schaeybroeck, Phys. Rev. A 80, 06560 (2009). (addendum)

    Google Scholar 

  35. 35.

    J.O. Indekeu, B. Van Schaeybroeck, Phys. Rev. Lett. 93, 210402 (2004)

    ADS  Article  Google Scholar 

  36. 36.

    B. Van Schaeybroeck, J.O. Indekeu, Phys. Rev. A 91, 013626 (2015)

    ADS  Article  Google Scholar 

  37. 37.

    J.O. Indekeu, C.-Y. Lin, N. VanThu, B. Van Schaeybroeck, T.H. Phat, Phys. Rev. A 91, 033615 (2015)

    ADS  Article  Google Scholar 

  38. 38.

    Nguyen Van Thu, Tran Huu Phat, Pham The Song, Wetting phase transition of two segregated Bose–Einstein condensates restricted by a hard wall. Phys. Lett. A. 380, 1487 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  39. 39.

    J.G. Brankov, D.M. Danchev, N.S. Tonchev, Theory of Critical Phenomena in Finite-Size Systems: Scaling and Quantum Effects (World Scientific, Singapore, 2000)

    Google Scholar 

  40. 40.

    R. Lipowsky, in Random Fluctuations and Pattern Growth, ed. by H. Stanley, N. Ostrowsky, NATO ASI Series E, vol 157 ( Kluwer Akad. Publ., Dordrecht, 1988), pp. 227–245

  41. 41.

    K. Binder, in Phase Transitions and Critical Phenomena, ed. by C. Domb, J. Lebowitz vol 8 (Academic Press, London, 1983)

  42. 42.

    F. Igloi, I. Peschel, L. Turban, Adv. Phys. 42, 683 (1993)

    ADS  Article  Google Scholar 

  43. 43.

    S. Puri, L. Frisch, J. Condens. Matter 9, 2109 (1997)

    ADS  Article  Google Scholar 

  44. 44.

    H. Furukawa, Physics 204, 237 (1994)

    Google Scholar 

  45. 45.

    M. Krech, The Casimir Effect in Critical Systems (World Scientific, Singapore, 1994)

    Google Scholar 

  46. 46.

    K. Binder, J. Non-Equilib. Thermodyn. 23, 1 (1998)

    ADS  Article  Google Scholar 

  47. 47.

    S. Puri, J. Phys. Condens. Matter 17, R1 (2005)

    Article  Google Scholar 

  48. 48.

    J.G. Brankov, D.M. Danchev, N.S. Tonchev, Theory of Critical Phenomena in Finite-Sise Systems, Sacling and Quantum Effects (World Scientific, Singapore, 2010)

    Google Scholar 

  49. 49.

    K. Binder, S. Puri, S.K. Das, J. Horbach, J. Stat. Phys. Condens. 138, 51 (2010)

    ADS  Article  Google Scholar 

  50. 50.

    D.A. Takahashi, M. Kobayashi, M. Nitta, Phys. Rev. B 91, 184501 (2015)

    ADS  Article  Google Scholar 

  51. 51.

    T.H. Phat, N. Van Thu, Int. J. Mod. Phys. A 29, 1450078 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  52. 52.

    A. Onuki, Phase Transition Dynamics (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  53. 53.

    M. Uwaha, J. Low Temp. Phys. 77, 165 (1989)

    ADS  Article  Google Scholar 

  54. 54.

    U. Mohideen, A. Roy, Phys. Rev. Lett. 81, 4549 (1998)

    ADS  Article  Google Scholar 

  55. 55.

    D. Iannuzzi, M. Lisanti, F. Capasso, Proc. Natl. Acad. Sci. 101, 4019 (2004)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

This work is funded by the Ministry of Education and Training of Vietnam under Grant No. B2016-SP2-04. The fruitful discussions with Bert V. Schaeybroeck are acknowledged with thanks.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tran Huu Phat.

Appendices

Appendix 1: The Analytics Expression for \(A_j, B_j \)

The constants in Eqs. (15) and (16) are obtained by substitution of them in Robin boundary conditions and continuity conditions for \(\phi _j\) yielding

$$\begin{aligned}&A_1=\frac{e^{\sqrt{2}z_0}[\sqrt{\eta }-\sqrt{\eta }_- e^{\sqrt{2}h_-}+e^{2\sqrt{\eta }h_+}(\sqrt{\eta }-\sqrt{\eta }_+ e^{\sqrt{2}h_-})]}{X}, \end{aligned}$$
(30)
$$\begin{aligned}&A_2=\frac{\sqrt{2}(e^{\sqrt{2}h}-e^{\sqrt{2}z_0})^2e^{\sqrt{\eta }(2h+z_0)}}{X},\end{aligned}$$
(31)
$$\begin{aligned}&B_1=\frac{\sqrt{2}(e^{\frac{\sqrt{2}h_+}{\xi }}-1)^2e^{\frac{\sqrt{\eta }z_0}{\xi }}}{Y},\end{aligned}$$
(32)
$$\begin{aligned}&B_2=\frac{e^{\frac{\sqrt{2}h}{\xi }}(\sqrt{\eta }_- e^{\frac{2\sqrt{\eta }h}{\xi }}+\sqrt{\eta }_+e^{\frac{2\sqrt{\eta }z_0}{\xi }})}{Y}-\frac{e^{\frac{\sqrt{2}h}{\xi }}\sqrt{\eta }(e^{\frac{2\sqrt{\eta }h+\sqrt{2}h_+}{\xi }}+e^{\frac{\sqrt{2}h_++2\sqrt{\eta }z_0}{\xi }})}{Y}\qquad \quad \end{aligned}$$
(33)

with

$$\begin{aligned}&h_{\pm }=h\pm z_0, \sqrt{\eta }_{\pm }=\sqrt{\eta }\pm \sqrt{2},\\&X=\sqrt{\eta }_- e^{2\sqrt{2}h}-\sqrt{\eta }_+e^{2\sqrt{2}z_0}+2 e^{(2\sqrt{\eta }+\sqrt{2})h_+}(\sqrt{\eta }\text {sinh}[\sqrt{2}h_-]+\sqrt{2}\text {cosh}[\sqrt{2}h_-]),\\&Y=e^{\frac{2\sqrt{\eta }z_0}{\xi }}[\sqrt{\eta }_+ -\sqrt{\eta }_- e^{\frac{2\sqrt{2}h_+}{\xi }}]- e^{\frac{2\sqrt{\eta }h}{\xi }}[-\sqrt{\eta }_-+\sqrt{\eta }_+ e^{\frac{2\sqrt{2}h_+}{\xi }}]. \end{aligned}$$

Appendix 2: The Integrals

Using the wave functions for ground state (15), (16) with the constants in “Appendix 1” we arrive

$$\begin{aligned} I_1= & {} \frac{1}{2}(2A_1^2e^{2\sqrt{2}h}(\sqrt{2}\text {sinh}(2\sqrt{2}h_-)+4h_-)+2\sqrt{2}A_1e^{\sqrt{2}(3h-2z_0)}\nonumber \\&-\,2A_1e^{\sqrt{2}h}(\sqrt{2}-4h_-)+\sqrt{2}(e^{2\sqrt{2}h_-}-1)) \nonumber \\&+\,A_2^2\sqrt{\eta }e^{-2\sqrt{\eta }h}(2\sqrt{\eta }h_++\text {sinh}(2\sqrt{\eta }h_+)), \end{aligned}$$
(34)
$$\begin{aligned} I_2= & {} \frac{B_1^2}{\xi ^2}\sqrt{\eta }e^{\frac{2\sqrt{\eta }h}{\xi }} \Bigg [2\sqrt{\eta }h_--\xi \text {sinh}\frac{-2\sqrt{\eta }h_-}{\xi }\Bigg ] \nonumber \\&+\,\frac{e^{\frac{-2\sqrt{2}(3h+z_0)}{\xi }}}{2\xi ^2}\Bigg [B_2^2\left( -\sqrt{2}\xi e^{\frac{2\sqrt{2}h}{\xi }}+8h_+e^{\frac{2\sqrt{2}(2h+z_0)}{\xi }}+\sqrt{2}\xi e^{\frac{2\sqrt{2}(3h+2z_0)}{\xi }}\right) \nonumber \\&-\,2\sqrt{2}B_2\xi e^{\frac{3\sqrt{2}h}{\xi }}+2B_2e^{\frac{\sqrt{2}(5h+2z_0)}{\xi }}(4h_++\sqrt{2}\xi )-\sqrt{2}\xi \left( e^{\frac{4\sqrt{2}h}{\xi }}-e^{\frac{2\sqrt{2}(3h+z_0)}{\xi }}\right) \Bigg ],\nonumber \\ \end{aligned}$$
(35)

and analytical form of the normalization constants

$$\begin{aligned} \mathcal {N}_1= & {} \frac{1}{4}(2A_1^2e^{2\sqrt{2}h}(\sqrt{2}\text {sinh} (2\sqrt{2}h_-) -4h_-)+ 2A_1(e^{\sqrt{2}h}(3\sqrt{2}-4h_-) \nonumber \\&-\,2\sqrt{2}e^{\sqrt{2}(2h-z_0)}+\sqrt{2}e^{\sqrt{2}(3h-2z_0)}-2\sqrt{2}e^{\sqrt{2}z_0})\nonumber \\&+\,\sqrt{2}e^{\sqrt{2}h_-}(e^{\sqrt{2}h_-}-4)+4h_-+3\sqrt{2})\nonumber \\&+\,\frac{A_2^2e^{-2\sqrt{\eta }h}(\text {sinh}(2\sqrt{\eta }h_+)-2\sqrt{\eta }h_+)}{\sqrt{\eta }},\end{aligned}$$
(36)
$$\begin{aligned} \mathcal {N}_2= & {} \frac{1}{4}e^{-\frac{2\sqrt{2}(3h+z_0)}{\xi }} \left( B_2^2\left( -\left( \sqrt{2}\xi e^{\frac{2\sqrt{2}h}{\xi }} +8h_+e^{\frac{2\sqrt{2}(2h+z_0)}{\xi }} -\sqrt{2}\xi e^{\frac{2\sqrt{2}(3h+2z_0)}{\xi }}\right) \right) \right. \nonumber \\&\left. +\,4\sqrt{2}\xi e^{\frac{\sqrt{2}(5h+z_0)}{\xi }}-2\sqrt{2}B_2\xi \left( e^{\frac{3\sqrt{2}h}{\xi }}-2e^{\frac{3\sqrt{2}(2h+z_0)}{\xi }}-2e^{\frac{\sqrt{2}(4h+z_0)}{\xi }}\right) \right. \nonumber \\&\left. -\,2B_2e^{\frac{\sqrt{2}(5h+z_0)}{\xi }}(4h_+ +3\sqrt{2}\xi )-\sqrt{2}\xi e^{\frac{4\sqrt{2}h}{\xi }}+e^{\frac{2\sqrt{2}(3h+z_0)}{\xi }}(4h_+ -3\sqrt{2}\xi )\right) \nonumber \\&-\,\frac{B_1^2}{\sqrt{\eta }}e^{\frac{2\sqrt{2}h}{\xi }}\xi \text {sinh}\Bigg (\frac{-2\sqrt{\eta }h_-}{\xi }\Bigg )-2h_-. \end{aligned}$$
(37)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Van Thu, N., Phat, T.H. & Song, P.T. Finite-Size Effects of Surface Tension in Two Segregated BECs Confined by Two Hard Walls. J Low Temp Phys 186, 127–147 (2017). https://doi.org/10.1007/s10909-016-1658-x

Download citation

Keywords

  • Finite-size effects
  • Segregated Bose–Einstein condensates
  • Surface tension
  • Double-parabola approximation
  • Casimir force