Skip to main content

Quantum Tunneling of \(^3\)He in Solid \(^4\)He: A New Analysis

Abstract

We discuss the analysis of the experimental values of the nuclear spin–lattice and spin–spin relaxation times for the tunneling of \(^3\)He as isotopic impurities in solid \(^4\)He. These two relaxation times cannot be described quantitatively using a unique correlation time although it is often presented as such in the literature. In this paper, we discuss how to distinguish the high-frequency portion of the spectral densities that determine the spin–lattice relaxation rates from the low-frequency components which determine the spin–spin relaxation rates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    R.F. Buzerak, M. Chan, H. Meyer, J. Low Temp. Phys. 28, 415 (1977)

    ADS  Article  Google Scholar 

  2. 2.

    F. Weinhaus, H. Meyer, Phys. Rev. B 7, 2974 (1973)

    ADS  Article  Google Scholar 

  3. 3.

    I. Yu, J. Low Temp. Phys. 60, 425 (1985)

    ADS  Article  Google Scholar 

  4. 4.

    D. Zhou, N.S. Sullivan, Physica B 194–196, 957 (1994)

    Article  Google Scholar 

  5. 5.

    D. Zhou, C.M. Edwards, N.S. Sullivan, Phys. Rev. Lett. 62, 1528 (1989)

    ADS  Article  Google Scholar 

  6. 6.

    D. Ramm, H. Meyer, J. Low Temp. Phys. 40, 173 (1980)

    ADS  Article  Google Scholar 

  7. 7.

    H. Meyer, Can. J. Phys. 65, 1453 (1987)

    ADS  Article  Google Scholar 

  8. 8.

    H. Meyer, Fiz. Nizkikh Temp – (in english) [Low Temp. Phys. (Kharkov)] 24, 507 (1998)

  9. 9.

    M. Richards, J. Pope, A. Widom, Phys. Rev. Lett. 29, 708 (1972)

    ADS  Article  Google Scholar 

  10. 10.

    A. Widom, M. Richards, Phys. Rev. A 6, 1196 (1972)

    ADS  Article  Google Scholar 

  11. 11.

    M. Richards, J. Smith, P. Tofts, W. Mullin, Phys. Rev. Lett. 34, 1545 (1975)

    ADS  Article  Google Scholar 

  12. 12.

    A. Allen, M. Richards, J. Schratter, J. Low Temp. Phys. 47, 289 (1982)

    ADS  Article  Google Scholar 

  13. 13.

    J. Schratter, A. Allen, M. Richards, J. Low Temp. Phys. 57, 179 (1984)

    ADS  Article  Google Scholar 

  14. 14.

    V.N. Grigoriev, B.N. Esel’son, V.A. Mikheev, V.A. Slusarev, M.A. Strzhemechny, Y.E. Shulman, J. Low Temp. Phys. 13(1–2), 65 (1973)

    ADS  Article  Google Scholar 

  15. 15.

    R. Toda, P. Gumann, K. Kosakai, M. Kanemoto, W. Onoe, Y. Sasaki, Phys. Rev. B 81, 214515 (2010)

    ADS  Article  Google Scholar 

  16. 16.

    R. Toda, W. Onoe, M.K.T. Kakuda, Y. Tanaka, Y. Sasaki, J. Low Temp. Phys. 162, 476 (2011)

    ADS  Article  Google Scholar 

  17. 17.

    S.S. Kim, C. Huan, L. Yin, J.S. Xia, D. Candela, N.S. Sullivan, Phys. Rev. Lett. 106, 185303 (2011)

    ADS  Article  Google Scholar 

  18. 18.

    S.S. Kim, C. Huan, L. Yin, J.S. Xia, D. Candela, N.S. Sullivan, Phys. Rev. B 87, 224303 (2013)

    ADS  Article  Google Scholar 

  19. 19.

    N.S. Sullivan, D. Candela, S.S. Kim, C. Huan, L. Yin, J.S. Xia, J. Low Temp. Phys. 175, 133 (2014)

    ADS  Article  Google Scholar 

  20. 20.

    R.A. Guyer, R.C. Richardson, L.I. Zane, Rev. Mod. Phys. 43(4), 532 (1971)

    ADS  Article  Google Scholar 

  21. 21.

    A. Landesman, Phys Lett 54A, 137 (1975)

    ADS  Article  Google Scholar 

  22. 22.

    A. Landesman, J.M. Winter, in Proceedings Low Temperature Physics-LT-13 (Plenum, New York, 1974), pp. 73–78

  23. 23.

    D. Candela, C. Huan, S.S. Kim, L. Yin, J.S. Xia, N.S. Sullivan, J. Phys. Conf. Ser. 568, 012017 (2014)

    ADS  Article  Google Scholar 

  24. 24.

    A. Landesman, Bull. Mag. Res. 4, 105 (1980)

    Google Scholar 

  25. 25.

    S.S. Kim, C. Huan, L. Yin, J.S. Xia, N.S. Sullivan, D. Candela, J. Phys. Conf Ser. 400, 012031 (2012)

    ADS  Article  Google Scholar 

  26. 26.

    Y. Hirayoshi, T. Mizusaki, S. Maekawa, A. Hirai, Phys. Lett. 57A, 359 (1976)

    ADS  Article  Google Scholar 

  27. 27.

    I. Schuster, Y. Swirsky, E.J. Scmidt, E. Polturak, S.G. Lipson, Europhys. Lett. 33(8), 623 (1996)

    ADS  Article  Google Scholar 

  28. 28.

    A.S. Greenberg, W.C. Thomlinson, R.C. Richardson, J. Low Temp. Phys. 8, 3 (1972)

    ADS  Article  Google Scholar 

  29. 29.

    R. Toda, P. Gumann, K. Kosaka, M. Kanemoto, W. Onoe, Y. Sasaki, Phys. Rev. B 81, 214515 (2010)

    ADS  Article  Google Scholar 

  30. 30.

    C. Huan, S.S. Kim, L. Yin, J.S. Xia, D. Candela, N.S. Sullivan, J. Low Temp. Phys. 162, 167 (2011)

    ADS  Article  Google Scholar 

  31. 31.

    A. Landesman, J. Low Temp. Phys. 30, 117 (1978)

    ADS  Article  Google Scholar 

  32. 32.

    W. Huang, H.A. Goldberg, M.T. Takemori, R.A. Guyer, Phys. Rev. Lett. 33(5), 283 (1974)

    ADS  Article  Google Scholar 

  33. 33.

    W. Huang, H.A. Goldberg, R.A. Guyer, Phys. Rev. B 11(9), 23374 (1975)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge numerous discussions with Brian Cowan, Maurice Chapellier, Henri Godfrin, Pradeep Kumar, and Alan Dorsey. The experimental work at very low \(^3\)He concentrations was carried out at the National High Magnetic Field Laboratory’s High B/T Facility supported by the National Science Foundation through DMR-1157490. NS also acknowledges the support from DMR-1303599.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. S. Sullivan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huan, C., Kim, S.S., Candela, D. et al. Quantum Tunneling of \(^3\)He in Solid \(^4\)He: A New Analysis. J Low Temp Phys 185, 354–362 (2016). https://doi.org/10.1007/s10909-016-1637-2

Download citation

Keywords

  • Tunneling
  • Magnetic resonance
  • Quantum diffusion