Journal of Low Temperature Physics

, Volume 185, Issue 1–2, pp 138–160 | Cite as

Adsorption on Highly Ordered Porous Alumina

Article

Abstract

Porous anodic aluminum oxide (AAO) is characterized by a regular arrangement of the pores with a narrow pore size distribution over extended areas, uniform pore depth, and solid pore walls without micropores. Thanks to significant improvements in anodization techniques, structural engineering of AAO allows to accurately tailor the pore morphology. These features make porous AAO an excellent substrate to study adsorption phenomena. In this paper, we review recent experiments involving the adsorption in porous AAO. Particular attention will be devoted to adsorption in straight and structured pores with a closed end which shed new light on fundamental issues like the origin of hysteresis in closed end pores and the nature of evaporation from ink-bottle pores. The results will be compared to those obtained in other synthetic materials like porous silicon and silica.

References

  1. 1.
    E.A. Flood, The Solid–Gas Interface (M. Dekker, New York, 1967)Google Scholar
  2. 2.
    S.J. Gregg, K.S.W. Sing, Adsorption, Surface Area and Porosity (Academic, London, 1982)Google Scholar
  3. 3.
    J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, K.S. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications (Academic Press, Oxford, 2013)Google Scholar
  4. 4.
    P. Liu, G.F. Chen, Porous Materials: Processing and Applications (Elsevier, Oxford, 2014)Google Scholar
  5. 5.
    M.L.K. Hoa, M. Lu, Y. Zhang, Adv. Colloid Interface Sci. 121, 9 (2006)CrossRefGoogle Scholar
  6. 6.
    D.Y. Zhao, J.L. Feng, Q.S. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    J.S. Beck et al., J. Am. Chem. Soc. 114, 10834 (1992)CrossRefGoogle Scholar
  8. 8.
    W. Lee, R. Ji, U. Gösele, K. Nielsch, Nat. Mater. 5, 741 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    H. Masuda, K. Fukuda, Science 268, 1466 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    M.I.J. Beale, J.D. Benjamin, M.J. Uren, N.G. Chew, A.G. Cullis, J. Cryst. Growth 73, 622 (1985)ADSCrossRefGoogle Scholar
  11. 11.
    M.H. Jin, X.J. Feng, L. Feng, T.L. Sun, J. Zhai, T.J. Li, L. Jiang, Adv. Mater. 17, 1977 (2005)CrossRefGoogle Scholar
  12. 12.
    W. Lee, H. Han, A. Lotnyk, M.A. Schubert, S. Senz, M. Alexe, D. Hesse, S. Baik, U. Gösele, Nat. Nanotechnol. 3, 402 (2008)CrossRefGoogle Scholar
  13. 13.
    X. Yao, Y. Hu, A. Grinthal, T.-S. Wong, L. Mahadevan, J. Aizenberg, Nat. Mater. 12, 529 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    L.D. Gelb, K.E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak, Rep. Prog. Phys. 62, 1573 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    L. Bruschi, G. Mistura, J. Low Temp. Phys. 157, 206 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    R. Evans, U.M.B. Marconi, P. Tarazona, J. Chem. Soc. Faraday Trans. 2(82), 1763 (1986)CrossRefGoogle Scholar
  17. 17.
    L.H. Cohan, J. Am. Chem. Soc. 60, 433 (1938)CrossRefGoogle Scholar
  18. 18.
    A.O. Parry, C. Rascón, N.B. Wilding, R. Evans, Phys. Rev. Lett. 98, 226101 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    R. Roth, A.O. Parry, Mol. Phys. 109, 1159 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    A.O. Parry, C. Rascón, Phys. Rev. E 85, 031606 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    A.O. Parry, C. Rascón, Phys. Rev. Lett. 107, 206104 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    U.M.B. Marconi, F. Van Swol, Phys. Rev. A 39, 4109 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    B. Libby, P.A. Monson, Langmuir 20, 4289 (2004)CrossRefGoogle Scholar
  24. 24.
    P.A. Monson, Microporous Mesoporous Mater. 160, 47 (2012)CrossRefGoogle Scholar
  25. 25.
    L. Sarkisov, P.A. Monson, Langmuir 17, 7600 (2001)CrossRefGoogle Scholar
  26. 26.
    D. Schneider, R. Valiullin, P.A. Monson, Langmuir 30, 1290 (2014)CrossRefGoogle Scholar
  27. 27.
    L.D. Gelb, Mol. Phys. 100, 2049 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    S.M. Gatica, M.W. Cole, Phys. Rev. E 72, 041602 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    G. Mistura, A. Pozzato, G. Grenci, L. Bruschi, M. Tormen, Nat. Commun. 4, 2966 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    B. Coasne, A. Grosman, N. Dupont-Pavlovsky, C. Ortega, M. Simon, Phys. Chem. Chem. Phys. 3, 1196 (2001)CrossRefGoogle Scholar
  31. 31.
    B. Coasne, A. Grosman, C. Ortega, M. Simon, Phys. Rev. Lett. 88, 256102 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    K. Morishige, M. Ito, J. Chem. Phys. 117, 8036 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    D. Wallacher, N. Künzner, D. Kovalev, N. Knorr, K. Knorr, Phys. Rev. Lett. 92, 195704 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    K.J. Alvine, O.G. Shpyrko, P.S. Pershan, K. Shin, T.P. Russell, Phys. Rev. Lett. 97, 175503 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    J.M. Esparza, M.L. Ojeda, A. Campero, A. Dominguez, I. Kornhauser, F. Rojas, A.M. Vidales, R.H. Lopez, G. Zgrablich, Colloids Surf. A 241, 35 (2004)CrossRefGoogle Scholar
  36. 36.
    K. Morishige, Y. Nakamura, Langmuir 20, 4503 (2004)CrossRefGoogle Scholar
  37. 37.
    A. Grosman, C. Ortega, Langmuir 21, 10515 (2005)CrossRefGoogle Scholar
  38. 38.
    L. Bruschi, G. Fois, G. Mistura, K. Sklarek, R. Hillebrand, M. Steinhart, U. Goesele, Langmuir 24, 10936 (2008)CrossRefGoogle Scholar
  39. 39.
    A. Grosman, C. Ortega, Langmuir 24, 3977 (2008)CrossRefGoogle Scholar
  40. 40.
    F. Casanova, C.E. Chiang, C.P. Li, I.V. Roshchin, A.M. Ruminski, M.J. Sailor, I.K. Schuller, Epl 81, 26003 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    F. Casanova, C.E. Chiang, C.-P. Li, I.V. Roshchin, A.M. Ruminski, M.J. Sailor, I.K. Schuller, Nanotechnology 19, 315709 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    L. Bruschi, G. Mistura, P.T.M. Nguyen, D.D. Do, D. Nicholson, S.-J. Park, W. Lee, Nanoscale 7, 2587 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    M. Thommes, B. Smarsly, M. Groenewolt, P.I. Ravikovitch, A.V. Neimark, Langmuir 22, 756 (2006)CrossRefGoogle Scholar
  44. 44.
    E. Kierlik, P.A. Monson, M.L. Rosinberg, L. Sarkisov, G. Tarjus, Phys. Rev. Lett. 87, 4 (2001)CrossRefGoogle Scholar
  45. 45.
    S. Naumov, A. Khokhlov, R. Valiullin, J. Kaerger, P.A. Monson, Phys. Rev. E 78, 060601 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    S. Naumov, R. Valiullin, J. Kaerger, P.A. Monson, Phys. Rev. E 80, 031607 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    J. Puibasset, J. Chem. Phys. 127, 154701 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    J. Puibasset, Mol. Simul. 40, 690 (2014)CrossRefGoogle Scholar
  49. 49.
    B. Coasne, A. Galarneau, F. Di Renzo, R.J.M. Pellenq, J. Phys. Chem. C 111, 15759 (2007)CrossRefGoogle Scholar
  50. 50.
    B. Coasne, F. Di Renzo, A. Galarneau, R.J.M. Pellenq, Langmuir 24, 7285 (2008)CrossRefGoogle Scholar
  51. 51.
    H. Bock, M. Schoen, Phys. Rev. E 59, 4122 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    B. Kuchta, L. Firlej, M. Marzec, P. Boulet, Langmuir 24, 4013 (2008)CrossRefGoogle Scholar
  53. 53.
    Y. Liu, J. Wilcox, Int. J. Coal Geol. 104, 83 (2012)CrossRefGoogle Scholar
  54. 54.
    K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)CrossRefGoogle Scholar
  55. 55.
    K. Morishige, Adsorption 14, 157 (2008)CrossRefGoogle Scholar
  56. 56.
    W. Lee, in Nanoporous Alumina: Fabrication, Structure, Properties and Applications, ed. by D. Losic, A. Santos (Springer International Publishing, Switzerland, 2015), p. 107Google Scholar
  57. 57.
    W. Lee, S.J. Park, Chem. Rev. 114, 7487 (2014)CrossRefGoogle Scholar
  58. 58.
    G.F. Voronoi, J. Reine Angew. Math. 134, 198 (1908)MathSciNetGoogle Scholar
  59. 59.
    H. Masuda, M. Satoh, Jpn. J. Appl. Phys. 35, L126 (1996)ADSCrossRefGoogle Scholar
  60. 60.
    W. Lee, J.-C. Kim, U. Gösele, Adv. Funct. Mater. 20, 21 (2010)CrossRefGoogle Scholar
  61. 61.
    W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz, U. Gösele, Nat. Nanotechnol. 3, 234 (2008)CrossRefGoogle Scholar
  62. 62.
    H. Masuda, E. Hasegawa, S. Ono, J. Electrochem. Soc. 144, L127 (1997)CrossRefGoogle Scholar
  63. 63.
    A.P. Li, F. Müller, A. Birner, K. Nielsch, U. Gösele, J. Appl. Phys. 84, 6023 (1998)ADSCrossRefGoogle Scholar
  64. 64.
    K. Schwirn, W. Lee, R. Hillebrand, M. Steinhart, K. Nielsch, U. Gösele, ACS Nano 2, 302 (2008)CrossRefGoogle Scholar
  65. 65.
    S.-Z. Chu, K. Wada, S. Inoue, M. Isogai, A. Yasumori, Adv. Mater. 17, 2115 (2005)CrossRefGoogle Scholar
  66. 66.
    H. Masuda, K. Yada, A. Osaka, Jpn. J. Appl. Phys. 37, L1340 (1998)ADSCrossRefGoogle Scholar
  67. 67.
    K. Nielsch, J. Choy, K. Schwirn, R.B. Wehrspohn, U. Gösele, Nano Lett. 2, 677 (2002)ADSCrossRefGoogle Scholar
  68. 68.
    Y. Li, M. Zheng, L. Ma, W. Shen, Nanotechnology 17, 5101 (2006)ADSCrossRefGoogle Scholar
  69. 69.
    W. Lee, R. Scholz, U. Gösele, Nano Lett. 8, 2155 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    W. Lee, J.-C. Kim, Nanotechnology 21, 485304 (2010)CrossRefGoogle Scholar
  71. 71.
    D. Losic, M. Lillo, D. Losic Jr., Small 5, 1392 (2009)CrossRefGoogle Scholar
  72. 72.
    D. Losic, D. Losic Jr., Langmuir 25, 5426 (2009)CrossRefGoogle Scholar
  73. 73.
    J. Martín, M. Martín-González, J.F. Fernández, O. Caballero-Calero, Nat. Commun. 5, 5130 (2014)CrossRefGoogle Scholar
  74. 74.
    H. Han, S.-J. Park, J.S. Jang, H. Ryu, K.J. Kim, S. Baik, W. Lee, A.C.S. Appl, Mater. Interfaces 5, 3441 (2013)CrossRefGoogle Scholar
  75. 75.
    B. He, S.J. Son, S.B. Lee, Anal. Chem. 79, 5257 (2007)CrossRefGoogle Scholar
  76. 76.
    J. Li, C. Li, C. Chen, Q. Hao, Z. Wang, J. Zhu, X. Gao, A.C.S. Appl, Mater. Interfaces 4, 5678–5683 (2012)CrossRefGoogle Scholar
  77. 77.
    A. Santos, P. Formentín, J. Pallarès, J. Ferré-Borrull, L.F. Marsal, J. Electroanal. Chem. 655, 73 (2011)CrossRefGoogle Scholar
  78. 78.
    A. Santos, T. Kumeria, Y. Wang, D. Losic, Nanoscale 6, 9991 (2014)ADSCrossRefGoogle Scholar
  79. 79.
    L. Bruschi, A. Carlin, G. Mistura, Phys. Rev. Lett. 89, 166101 (2002)ADSCrossRefGoogle Scholar
  80. 80.
    L. Bruschi, A. Carlin, G. Mistura, J. Chem. Phys. 115, 6200 (2001)ADSCrossRefGoogle Scholar
  81. 81.
    L. Bruschi, A. Carlin, A.O. Parry, G. Mistura, Phys. Rev. E 68, 021606 (2003)ADSCrossRefGoogle Scholar
  82. 82.
    K. Morishige, M. Tateishi, Langmuir 22, 4165 (2006)CrossRefGoogle Scholar
  83. 83.
    S. Naumov, A. Khokhlov, R. Valiullin, J. Kärger, P.A. Monson, Phys. Rev. E 78, 060601 (2008)ADSCrossRefGoogle Scholar
  84. 84.
    A. Grosman, C. Ortega, Phys. Rev. B. 78, 085433 (2008)ADSCrossRefGoogle Scholar
  85. 85.
    P.T.M. Nguyen, D.D. Do, D. Nicholson, J. Phys. Chem. C 115, 4706 (2011)CrossRefGoogle Scholar
  86. 86.
    P.T.M. Nguyen, D.D. Do, D. Nicholson, Langmuir 29, 2927 (2013)CrossRefGoogle Scholar
  87. 87.
    C. Fan, D. D. Do, D. Nicholson, Mol. Simul., 1 (2014)Google Scholar
  88. 88.
    A. Malijevský, J. Chem. Phys. 137, 214704 (2012)ADSCrossRefGoogle Scholar
  89. 89.
    F. Ancilotto, M. Da Re, S. Grubišić, A. Hernando, P.L. Silvestrelli, F. Toigo, Mol. Phys. 109, 2787 (2011)ADSCrossRefGoogle Scholar
  90. 90.
    L. Bruschi, G. Mistura, L. Liu, W. Lee, U. Gösele, B. Coasne, Langmuir 26, 11894 (2010)CrossRefGoogle Scholar
  91. 91.
    L. Bruschi, G. Mistura, P. Phadungbut, D.D. Do, D. Nicholson, Y. Mayamei, W. Lee, Langmuir 31, 4895 (2015)CrossRefGoogle Scholar
  92. 92.
    L. Bruschi, G. Mistura, S.J. Park, W. Lee, Adsorption 20, 889 (2014)CrossRefGoogle Scholar
  93. 93.
    F. Casanova, C.E. Chiang, C.-P. Li, I.K. Schuller, Appl. Phys. Lett. 91, 243103 (2007)ADSCrossRefGoogle Scholar
  94. 94.
    F. Casanova, C.E. Chiang, A.M. Ruminski, M.J. Sailor, I.K. Schuller, Langmuir 28, 6832 (2012)CrossRefGoogle Scholar
  95. 95.
    A. Grosman, C. Ortega, Langmuir 27, 2364 (2011)CrossRefGoogle Scholar
  96. 96.
    C.J. Rasmussen, A. Vishnyakov, M. Thommes, B.M. Smarsly, F. Kleitz, A.V. Neimark, Langmuir 26, 10147 (2010)CrossRefGoogle Scholar
  97. 97.
    A.V. Neimark, A. Vishnyakov, J. Chem. Phys. 122, 054707 (2005)ADSCrossRefGoogle Scholar
  98. 98.
    P.I. Ravikovitch, A.V. Neimark, Langmuir 18, 1550 (2002)CrossRefGoogle Scholar
  99. 99.
    K. Morishige, H. Yasunaga, J. Phys. Chem. B 110, 3864 (2006)CrossRefGoogle Scholar
  100. 100.
    G.Y. Gor, C.J. Rasmussen, A.V. Neimark, Langmuir 28, 12100 (2012)CrossRefGoogle Scholar
  101. 101.
    C.J. Rasmussen, G.Y. Gor, A.V. Neimark, Langmuir 28, 4702 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Dipartimento di Fisica e Astronomia G. GalileiUniversità di PadovaPaduaItaly
  2. 2.CNISM Unità di PadovaPaduaItaly
  3. 3.Korea Research Institute of Standards and Science (KRISS)DaejeonKorea

Personalised recommendations