Journal of Low Temperature Physics

, Volume 184, Issue 1–2, pp 17–22 | Cite as

Tuning the Transition Temperature of WSi\(_{x}\) Alloys for Use in Cryogenic Microcalorimeters

  • T. CecilEmail author
  • L. Gades
  • T. Madden
  • D. Yan
  • A. Miceli


Microwave kinetic inductance detectors (MKID) provide a pathway to highly multiplexed, high-resolution, detectors. Over the past several years we have introduced the concept of the thermal kinetic inductance detector (TKID), which operates as a microcalorimeter. As with other microcalorimeters, the thermal noise of a TKID is reduced when the operating temperature is decreased. However, because the sensitivity of a TKID decreases as the operating temperature drops below 20 % of \(T_\mathrm{C}\), the \(T_\mathrm{C}\) of the resonator material must be tuned to match the desired operating temperature. We have investigated the WSi\(_{x}\) alloy system as a material for these detectors. By co-sputtering from a Si and W\(_{2}\)Si target, we have deposited WSi\(_{x}\) films with a tunable \(T_\mathrm{C}\) that ranges from 5 K down to 500 mK. These films provide a large kinetic inductance fraction and relatively low noise levels. We provide results of these studies showing the \(T_\mathrm{C}\), resistivity, quality factors, and noise as a function of deposition conditions. These results show that WSi\(_{x}\) is a good candidate for TKIDs.


Low temperature detector kinetic inductance detector  Materials Tungsten silicide 



We gratefully acknowledge Ralu Divan, Leo Ocola, Dave Czaplewski, and Suzanne Miller. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Work at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.


  1. 1.
    O. Quaranta, T.W. Cecil, L. Gades, B.A. Mazin, A. Miceli, Supercond. Sci. Technol. 26(10), 105021 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    S. Moseley, J. Mather, D. McCammon, J. Appl. Phys. 56(5), 1257–1262 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    T.W. Cecil, L. Gades, T. Madden, D. Yan, A. Miceli, IEEE Trans. Appl. Supercond. 25, 1–1 (2015)CrossRefGoogle Scholar
  4. 4.
    T. Cecil, A. Miceli, O. Quaranta, C. Liu, D. Rosenmann, S. McHugh, B.A. Mazin, Appl. Phys. Lett. 101(3), 032601 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    S. Kondo, J. Mater. Res. 7(04), 853–860 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    B. Baek, A.E. Lita, V. Verma, S.W. Nam, Appl. Phys. Lett. 98(25), 251105 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    J. Gao. The physics of superconducting microwave resonators. Ph.D. thesis, California Institute of Technology, 2008Google Scholar
  8. 8.
    H.G. Leduc, B. Bumble, P.K. Day, B.H. Eom, J. Gao, S.R. Golwala, B.A. Mazin, S. McHugh, A. Merrill, D.C. Moore, O. Noroozian, A.D. Turner, J. Zmuidzinas, Appl. Phys. Lett. 97(10), 102509 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • T. Cecil
    • 1
    Email author
  • L. Gades
    • 1
  • T. Madden
    • 1
  • D. Yan
    • 1
    • 2
  • A. Miceli
    • 1
  1. 1.Advanced Photon SourceArgonne National LaboratoryArgonneUSA
  2. 2.Department of Applied PhysicsNorthwestern UniversityEvanstonUSA

Personalised recommendations