Skip to main content

Advanced ACTPol Cryogenic Detector Arrays and Readout

Abstract

Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28–230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    M.D. Niemack et al., Proc. SPIE 7741, 77411S (2010)

    Article  Google Scholar 

  2. 2.

    P.A.R. Ade et al., Astrophys. J. 792, 62 (2014). doi:10.1088/0004-637X/792/1/62

    ADS  Article  Google Scholar 

  3. 3.

    Z. Staniszewski et al., J. Low Temp. Phys. 167, 827 (2012). doi:10.1007/s10909-012-0510-1

    ADS  Article  Google Scholar 

  4. 4.

    K. Arnold et al., Proc. SPIE 7741, 77411E (2010)

    Article  Google Scholar 

  5. 5.

    J.E. Austermann et al., Proc. SPIE 8452, 84521E (2012)

    Article  Google Scholar 

  6. 6.

    W. Grainger et al., Proc. SPIE 7020, 70202N (2008)

    Article  Google Scholar 

  7. 7.

    A. Fraisse et al., JCAP 2013(04), 047 (2013). doi:10.1088/1475-7516/2013/04/047

    Article  Google Scholar 

  8. 8.

    J.A. Tauber et al., A&A 520, A1 (2010). doi:10.1051/0004-6361/200912983

    ADS  Article  Google Scholar 

  9. 9.

    T. Essinger-Hileman et al., Proc. SPIE 9153, 91531I (2014)

    Article  Google Scholar 

  10. 10.

    S. Galli et al., Phys. Rev. D 90, 063504 (2014). doi:10.1103/PhysRevD.90.063504

    ADS  Article  Google Scholar 

  11. 11.

    E. Calabrese et al., JCAP 2014(08), 010 (2014). doi:10.1088/1475-7516/2014/08/010

    Article  Google Scholar 

  12. 12.

    D. Hanson et al., Phys. Rev. Lett. 111, 141301 (2013). doi:10.1103/PhysRevLett.111.141301

  13. 13.

    P.A.R. Ade et al., Phys. Rev. Lett. 112, 241101 (2014). doi:10.1103/PhysRevLett.112.241101

  14. 14.

    S. Naess et al., JCAP 10, 007 (2014). doi:10.1088/1475-7516/2014/10/007

    ADS  Article  Google Scholar 

  15. 15.

    M. Madhavacheril et al., Phys. Rev. Lett. 114, 151302 (2015). doi:10.1103/PhysRevLett.114.151302

  16. 16.

    R. Allison et al., MNRAS 451, 849 (2015). doi:10.1093/mnras/stv991

    ADS  Article  Google Scholar 

  17. 17.

    A. van Engelen et al., Astrophys. J. 808(1), 7 (2015). doi:10.1088/0004-637X/808/1/7

    ADS  Article  Google Scholar 

  18. 18.

    E. Grace et al., Proc. SPIE 9153, 915310 (2014)

    Article  Google Scholar 

  19. 19.

    S.P. Ho, et al., In this Special Issue LTD16 in J. Low Temp. Phys

  20. 20.

    R. Datta et al., In this Special Issue LTD16 in J. Low Temp. Phys

  21. 21.

    J. Delabrouille et al., A&A 553, A96 (2013). doi:10.1051/0004-6361/201220019

    ADS  Article  Google Scholar 

  22. 22.

    J.E. Carlstrom, G.P. Holder, E.D. Reese, Annu. Rev. Astron. Astrophys. 40, 643 (2002). doi:10.1146/annurev.astro.40.060401.093803

    ADS  Article  Google Scholar 

  23. 23.

    E.-M. Mueller et al., Phys. Rev. D 92, 063501 (2015). doi:10.1103/PhysRevD.92.063501

    ADS  MathSciNet  Article  Google Scholar 

  24. 24.

    K.M. Smith et al., AIP Conf. Proc. 1141(1), 121 (2009)

    ADS  Article  Google Scholar 

  25. 25.

    Z. Ivezic et al., arXiv:0805.2366 (2008)

  26. 26.

    S. Miyazaki et al., Proc. SPIE 6269, 62690B (2006)

    Article  Google Scholar 

  27. 27.

    B.L. Flaugher et al., Proc. SPIE 8446, 844611 (2012)

    Article  Google Scholar 

  28. 28.

    A. Merloni et al., arXiv:1209.3114 (2012)

  29. 29.

    K.S. Dawson et al., Astron. J. 145, 10 (2013). doi:10.1088/0004-6256/145/1/10

    ADS  Article  Google Scholar 

  30. 30.

    M. Levi et al., arXiv:1308.0847 (2013)

  31. 31.

    D.S. Swetz et al., Astrophys. J. Suppl. Ser. 194(2), 41 (2011). doi:10.1088/0067-0049/194/2/41

    ADS  Article  Google Scholar 

  32. 32.

    A. Kusaka et al., Rev. Sci. Instrum. 85(2), 024501 (2014). doi:10.1063/1.4862058

    ADS  Article  Google Scholar 

  33. 33.

    S. Hanany et al., Appl. Opt. 44(22), 4666 (2005). doi:10.1364/AO.44.004666

    ADS  Article  Google Scholar 

  34. 34.

    D. Li et al., In this Special Issue LTD16 in J. Low Temp. Phys

  35. 35.

    R. Datta et al., Appl. Opt. 52(36), 8747 (2013). doi:10.1364/AO.52.008747

    ADS  Article  Google Scholar 

  36. 36.

    R. Datta et al., J. Low Temp. Phys. 176(5–6), 670 (2014). doi:10.1007/s10909-014-1134-4

    ADS  Google Scholar 

  37. 37.

    S. Duff et al., In this Special Issue LTD16 in J. Low Temp. Phys

  38. 38.

    S.W. Deiker et al., Appl. Phys. Lett. 85(11), 2137 (2004). doi:10.1063/1.1789575

    ADS  Article  Google Scholar 

  39. 39.

    J. Austermann et al., In this Special Issue LTD16 in J. Low Temp. Phys

  40. 40.

    E. Battistelli et al., J. Low Temp. Phys. 151(3–4), 908 (2008). doi:10.1007/s10909-008-9772-z

    ADS  Article  Google Scholar 

  41. 41.

    W.S. Holland et al., MNRAS 430, 2513 (2013). doi:10.1093/mnras/sts612

    ADS  Article  Google Scholar 

  42. 42.

    J. Beyer, D. Drung, Supercond. Sci. Technol. 21(10), 105022 (2008)

    ADS  Article  Google Scholar 

  43. 43.

    R. Doriese et al., In this Special Issue LTD16 in J. Low Temp. Phys

  44. 44.

    C. Pappas et al., In this Special Issue LTD16 in J. Low Temp. Phys

Download references

Acknowledgments

This work was supported by the U.S. National Science Foundation through Awards 1312380 and 1440226. The NIST authors would like to acknowledge the support of the NIST Quantum Initiative. The development of multichroic detectors and lenses was supported by NASA Grants NNX13AE56G and NNX14AB58G. The work of KPC, KTC, EG, BJK, CM, BLS, JTW, and SMS was supported by NASA Space Technology Research Fellowship awards.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. W. Henderson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henderson, S.W., Allison, R., Austermann, J. et al. Advanced ACTPol Cryogenic Detector Arrays and Readout. J Low Temp Phys 184, 772–779 (2016). https://doi.org/10.1007/s10909-016-1575-z

Download citation

Keywords

  • Bolometers
  • Cosmic microwave background
  • Millimeter-wave
  • Polarimetry
  • Superconducting detectors
  • Transition edge sensors