Skip to main content
Log in

Rashbon Bound States Associated with a Spherical Spin–Orbit Coupling in an Ultracold Fermi Gas with an s-Wave Interaction

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate the formation of rashbon bound states and strong-coupling effects in an ultracold Fermi gas with a spherical spin–orbit interaction, \(H_\mathrm{so}=\lambda {\varvec{p}}\cdot \mathbf{\sigma }\) (where \(\mathbf{\sigma }=(\sigma _x,\sigma _y,\sigma _z)\) are Pauli matrices). Extending the strong-coupling theory developed by Nozières and Schmitt-Rink (NSR) to include this spin–orbit coupling, we determine the superfluid phase transition temperature \(T_\mathrm{c}\), as functions of the strength of a pairing interaction \(U_s\), as well as the spin–orbit coupling strength \(\lambda \). Evaluating poles of the NSR particle–particle scattering matrix describing fluctuations in the Cooper channel, we clarify the region where rashbon bound states dominate the superfluid phase transition in the \(U_s\)\(\lambda \) phase diagram. Since the antisymmetric spin–orbit interaction \(H_\mathrm{so}\) breaks the inversion symmetry of the system, rashbon bound states naturally have not only a spin-singlet and even-parity symmetry, but also a spin-triplet and odd-parity symmetry. Thus, our results would be also useful for the study of this parity-mixing effect in the BCS–BEC crossover regime of a spin–orbit coupled Fermi gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Giorgini, S. Pitaevskii, Stringari. Rev. Mod. Phys. 80, 1215 (2008)

    Article  ADS  Google Scholar 

  2. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  3. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  4. Y. Ohashi, A. Griffin, Phys. Rev. A 67, 063612 (2003)

    Article  ADS  Google Scholar 

  5. Y. Ohashi, Phys. Rev. Lett. 94, 050403 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  6. T.-L. Ho, R.B. Diener, Phys. Rev. Lett. 94, 090402 (2005)

    Article  ADS  Google Scholar 

  7. V. Gurarie, L. Radzihovsky, A.V. Andreev, Phys. Rev. Lett. 94, 230403 (2005)

    Article  ADS  Google Scholar 

  8. J. Levinsen, N.R. Cooper, V. Gurarie, Phys. Rev. Lett. 99, 210402 (2007)

    Article  ADS  Google Scholar 

  9. S.S. Botelho, C.A.R. Sá de Melo, J. Low Temp. Phys. 140, 409 (2005)

    Article  ADS  Google Scholar 

  10. M. Iskin, C.A.R. Sá de Melo, Phys. Rev. B 72, 224513 (2005)

    Article  ADS  Google Scholar 

  11. E. Grosfeld, N.R. Cooper, A. Stern, R. Ilan, Phys. Rev. B 76, 104516 (2007)

    Article  ADS  Google Scholar 

  12. C.-H. Cheng, S.-K. Yip, Phys. Rev. Lett. 95, 070404 (2005)

    Article  ADS  Google Scholar 

  13. R.A.W. Maier, C. Marzok, C. Zimmermann, PhW Courteille, Phys. Rev. A 81, 064701 (2010)

    Article  ADS  Google Scholar 

  14. R. Watanabe, S. Tsuchiya, Y. Ohashi, Phys. Rev. A 82, 043630 (2010)

    Article  ADS  Google Scholar 

  15. A. Perali, P. Pieri, G.C. Strinati, C. Castellani, Phys. Rev. B 66, 024510 (2002)

    Article  ADS  Google Scholar 

  16. J. Dalibard, F. Gerbier, G. Juzeliunas, P. Öhberg, Rev. Mod. Phys. 83, 1523 (2011)

    Article  ADS  Google Scholar 

  17. Y.-J. Lin, R.L. Compton, A.R. Perry, W.D. Phillips, J.V. Porto, I.B. Spielman, Phys. Rev. Lett. 102, 130401 (2009)

    Article  ADS  Google Scholar 

  18. L.W. Cheuk, A.T. Sommer, Z. Hadzibabic, T. Yefsah, W.S. Bakr, M.W. Zwierlein, Phys. Rev. Lett. 109, 095302 (2012)

    Article  ADS  Google Scholar 

  19. P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, J. Zhang, Phys. Rev. Lett. 109, 095301 (2012)

    Article  ADS  Google Scholar 

  20. J.P. Vyasanakere, V.B. Shenoy, Phys. Rev. B 83, 094515 (2011)

    Article  ADS  Google Scholar 

  21. J.P. Vyasanakere, V.B. Shenoy, Phys. Rev. A 86, 053617 (2012)

    Article  ADS  Google Scholar 

  22. J.P. Vyasanakere, V.B. Shenoy, New J. Phys. 14, 043041 (2012)

    Article  ADS  Google Scholar 

  23. Z. Zheng, H. Pu, X. Zou, G. Guo, Phys. Rev. A 90, 063623 (2014)

    Article  ADS  Google Scholar 

  24. J.P. Vyasanakere, S. Zhang, V.B. Shenoy, Phys. Rev. B 84, 014512 (2011)

    Article  ADS  Google Scholar 

  25. Z.-Q. Yu, H. Zhai, Phys. Rev. Lett. 107, 195305 (2011)

    Article  ADS  Google Scholar 

  26. L. He, X.-G. Huang, Phys. Rev. B 86, 014511 (2012)

    Article  ADS  Google Scholar 

  27. L. Jiang, X. Liu, H. Hu, H. Pu, Phys. Rev. A 84, 063618 (2011)

    Article  ADS  Google Scholar 

  28. T. Yamaguchi, Y. Ohashi, Phys. Rev. A 92, 013615 (2015)

    Article  ADS  Google Scholar 

  29. C.A. Regal, C. Ticknor, J.L. Bohn, D.S. Jin, Phys. Rev. Lett. 90, 053201 (2003)

    Article  ADS  Google Scholar 

  30. C. Ticknor, C.A. Regal, D.S. Jin, J.L. Bohn, Phys. Rev. A 69, 042712 (2004)

    Article  ADS  Google Scholar 

  31. J. Zhang, E.G.M. van Kempen, T. Bourdel, L. Khaykovich, J. Cubizolles, F. Chevy, M. Teichmann, L. Tarruell, S.J.J.M.F. Kokkelmans, C. Salomon, Phys. Rev. A 70, 030702(R) (2004)

    Article  ADS  Google Scholar 

  32. A.J. Leggett, Rev. Mod. Phys. 47, 331 (1975)

    Article  ADS  Google Scholar 

  33. D. Vollhardt, P. Wölfle, The Superfluid Phases of Helium 3 (Taylor and Francis, New York, 2002)

    MATH  Google Scholar 

  34. M. Sigrist, K. Ueda, Rev. Mod. Phys. 63, 239 (1991)

    Article  ADS  Google Scholar 

  35. G.R. Stewart, Rev. Mod. Phys. 56, 755 (1984)

    Article  ADS  Google Scholar 

  36. A.P. Mackenzie, Y. Maeno, Rev. Mod. Phys. 75, 657 (2003)

    Article  ADS  Google Scholar 

  37. P. Noziéres, S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985)

    Article  ADS  Google Scholar 

  38. C.A.R. Sá de Melo, M. Randeria, J.R. Engelbrecht, Phys. Rev. Lett. 71, 3202 (1993)

    Article  ADS  Google Scholar 

  39. J.W. Negele, H. Orland, Quantum Many-Particle Systems, Chapter 2 (Addison-Wesley, New York, 1988)

    Google Scholar 

  40. M. Randeria, in Bose-Einstein Condensation, ed. by A. Griffin, D.W. Snoke, S. Stringari (Cambridge University Press, New York, 1995), p. 355

    Chapter  Google Scholar 

  41. K. Maki, in Superconductivity, ed. by R.D. Parks (Marcel Dekker, New York, 1969), p. 1035

  42. H. Shiba, Prog. Theor. Phys. 40, 435 (1968)

    Article  ADS  Google Scholar 

  43. J.T. Stewart, J.P. Gaebler, D.S. Jin, Nature 454, 744 (2008)

    Article  ADS  Google Scholar 

  44. J.P. Gaebler, J.T. Stewart, T.E. Drake, D.S. Jin, A. Perali, P. Pieri, G.C. Strinati, Nat. Phys. 6, 569 (2010)

    Article  Google Scholar 

  45. J.P. Vyasanakere, V.B. Shenoy, Phys. Rev. B 92, 121111 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank R. Hanai, H. Tajima, M. Matsumoto, and P. van Wyk, for discussions. This work was supported by the KiPAS project in Keio university. H.T. and R.H. were supported by the Japan Society for the Promotion of Science. Y.O. was supported by Grant-in-Aid for Scientific Research from MEXT and JSPS in Japan (Nos. 25400418, 15H00840, 15K00178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yamaguchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, T., Inotani, D. & Ohashi, Y. Rashbon Bound States Associated with a Spherical Spin–Orbit Coupling in an Ultracold Fermi Gas with an s-Wave Interaction. J Low Temp Phys 183, 161–168 (2016). https://doi.org/10.1007/s10909-016-1558-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1558-0

Keywords

Navigation