Abstract
We studied the dynamics of thermoluminescence during destruction of porous structures formed by nanoclusters of nitrogen molecules containing high concentrations of stabilized nitrogen atoms. The porous structures were formed in bulk superfluid helium by injection of the products of discharges in nitrogen–helium gas mixtures through the liquid helium surface. Fast recombination of nitrogen atoms during warming-up led to explosive destruction of the porous structures accompanied by bright flashes. Intense emissions from the \(\alpha \)-group of nitrogen atoms, the \(\beta \)-group of oxygen atoms and the Vegard–Kaplan bands of N\(_2\) molecules were observed at the beginning of destruction. At the end of destruction the M- and \(\beta \)-bands of NO molecules as well as bands of O\(_2\) molecules were also observed. Observation of the emissions from NO molecules at the end of destruction was explained by processes of accumulation of NO molecules in the system due to the large van der Waals interaction of NO molecules. For the first time, we observed the emission of the O\(_2\) molecules at the end of destruction of the porous nitrogen structures as a result of the (NO)\(_2\) dimer formation in solid nitrogen and subsequent processes leading to the appearance of excited O\(_2\) molecules.
This is a preview of subscription content, access via your institution.






References
L. Vegard, Nature 113, 716–717 (1924)
L. Vegard, Nature 114, 357–359 (1924)
A.M. Bass, H.P. Broida, Formation and Trapping of Free Radicals (Academic, New York, 1960)
E. Savchenko, I. Khyzhniy, S. Uyutnov, A. Barabashov, G. Gumenchuk, A. Ponomaryov, V. Bondybey, Phys. Stat. Sol. C 12, 49–54 (2015)
E. Savchenko, I. Khyzhniy, S. Uyutnov, A. Barabashov, G. Gumenchuk, M.K. Beyer, A. Ponomaryov, V. Bondybey, J. Phys. Chem. A 119, 2475–2482 (2015)
A.M. Bass, H.P. Broida, Phys. Rev. 101, 1740–1747 (1956)
B.J. Fontana, J. Appl. Phys. 29, 1668–1673 (1958)
M.J. Peyron, H.P. Broida, J. Chem. Phys. 30, 139–150 (1959)
H.P. Broida, M.J. Peyron, J. Chem. Phys. 32, 1068–1071 (1960)
E.B. Gordon, L.P. Mezhov-Deglin, O.F. Pugachev, JETP Lett. 19, 103–106 (1974)
E.B. Gordon, L.P. Mezhov-Deglin, O.F. Pugachev, V.V. Khmelenko, Cryogenics 16(9), 555–557 (1976)
V.V. Khmelenko, H. Kunttu, D.M. Lee, J. Low Temp. Phys. 148, 1–31 (2007)
V. Kiryukhin, B. Keimer, R.E. Boltnev, V.V. Khmelenko, E.B. Gordon, Phys. Rev. Lett. 79, 1774–1777 (1997)
S.I. Kiselev, V.V. Khmelenko, D.M. Lee, V. Kiryukhin, R.E. Boltnev, E.B. Gordon, B. Keimer, Phys. Rev. B 65, 024517–12 (2001)
V. Kiryukhin, E.B. Bernard, V.V. Khmelenko, R.E. Boltnev, N.V. Krainyukova, D.M. Lee, Phys. Rev. Lett. 98, 195506–4 (2007)
N.V. Krainyukova, R.E. Boltnev, E.P. Bernard, V.V. Khmelenko, D.M. Lee, V. Kiryukhin, Phys. Rev. Lett. 109, 245505–5 (2012)
E.P. Bernard, V.V. Khmelenko, D.M. Lee, J. Low Temp. Phys. 150, 516–524 (2008)
S. Mao, R.E. Boltnev, V.V. Khmelenko, D.M. Lee, Low Temp. Phys. 38, 1037–1042 (2012)
E.B. Gordon, V.V. Khmelenko, E.A. Popov, A.A. Pelmenev, O.F. Pugachev, Chem. Phys. Lett. 155, 301–304 (1989)
E.P. Bernard, R.E. Boltnev, V.V. Khmelenko, D.M. Lee, J. Low Temp. Phys. 134, 199–204 (2004)
R.E. Boltnev, I.N. Krushinskaya, A.A. Pelmenev, D.Y. Stolyarov, V.V. Khmelenko, Chem. Phys. Lett. 305, 217–224 (1999)
V.V. Khmelenko, D.M. Lee, I.N. Krushinskaya, R.E. Boltnev, I.B. Bykhalo, A.A. Pelmenev, Low Temp. Phys. 38, 871–883 (2012)
V.V. Khmelenko, A.A. Pelmenev, I.N. Krushinskaya, I.B. Bykhalo, R.E. Boltnev, D.M. Lee, J. Low Temp. Phys. 171, 302–308 (2013)
R.E. Boltnev, I.B. Bykhalo, I.N. Krushinskaya, A.A. Pelmenev, V.V. Khmelenko, S. Mao, A. Meraki, S.C. Wilde, P.T. McColgan, D.M. Lee, J. Phys. Chem. A 119, 2438–2446 (2015)
H. Kajihara, T. Okamura, F. Okada, S. Koda, Laser Chem. 15, 83–92 (1995)
J. Goodman, L.E. Brus, J. Chem. Phys. 67, 1482–1490 (1977)
S. Nourry, L. Krim, MNRAS 450, 2903–2914 (2015)
M. Chergui, N. Schwentner, A. Tramer, Chem. Phys. Lett. 201, 187–193 (1993)
O. Oehler, D.A. Smith, K. Dressler, J. Chem. Phys. 66, 2097–2107 (1977)
I.Y. Fugol, Y.B. Poltotatski, Solid State Commun. 30, 497–500 (1979)
T.G. Slanger, J. Chem. Phys. 69, 4779–4791 (1978)
R.E. Boltnev, I.N. Krushinskaya, A.A. Pelmenev, E.A. Popov, D.Y. Stolyarov, V.V. Khmelenko, Low Temp. Phys. 31, 547–555 (2005)
E.M. Horl, J. Mol. Spectrosc. 3, 425–449 (1959)
J. Fournier, J. Deson, C. Vermeil, J. Chem. Phys. 68, 5062–5065 (1978)
L.G. Piper, L.M. Cowles, W.T. Pawlins, J. Chem. Phys. 85, 3369–3378 (1986)
F. Legay, N. Legay-Sommaire, Chem. Phys. Lett. 211, 516–522 (1993)
R.A. Ruehrwein, J.S. Hashman, J.W. Edwards, J. Phys. Chem. 64, 1317–1322 (1960)
Acknowledgments
We gratefully acknowledge funding from NSF Grant No. DMR 1209255.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Meraki, A., Mao, S., McColgan, P.T. et al. Thermoluminescence Dynamics During Destructions of Porous Structures Formed by Nitrogen Nanoclusters in Bulk Superfluid Helium. J Low Temp Phys 185, 269–286 (2016). https://doi.org/10.1007/s10909-016-1557-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10909-016-1557-1