Skip to main content

Thermoluminescence Dynamics During Destructions of Porous Structures Formed by Nitrogen Nanoclusters in Bulk Superfluid Helium

Abstract

We studied the dynamics of thermoluminescence during destruction of porous structures formed by nanoclusters of nitrogen molecules containing high concentrations of stabilized nitrogen atoms. The porous structures were formed in bulk superfluid helium by injection of the products of discharges in nitrogen–helium gas mixtures through the liquid helium surface. Fast recombination of nitrogen atoms during warming-up led to explosive destruction of the porous structures accompanied by bright flashes. Intense emissions from the \(\alpha \)-group of nitrogen atoms, the \(\beta \)-group of oxygen atoms and the Vegard–Kaplan bands of N\(_2\) molecules were observed at the beginning of destruction. At the end of destruction the M- and \(\beta \)-bands of NO molecules as well as bands of O\(_2\) molecules were also observed. Observation of the emissions from NO molecules at the end of destruction was explained by processes of accumulation of NO molecules in the system due to the large van der Waals interaction of NO molecules. For the first time, we observed the emission of the O\(_2\) molecules at the end of destruction of the porous nitrogen structures as a result of the (NO)\(_2\) dimer formation in solid nitrogen and subsequent processes leading to the appearance of excited O\(_2\) molecules.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. L. Vegard, Nature 113, 716–717 (1924)

    Article  ADS  Google Scholar 

  2. L. Vegard, Nature 114, 357–359 (1924)

    Article  ADS  Google Scholar 

  3. A.M. Bass, H.P. Broida, Formation and Trapping of Free Radicals (Academic, New York, 1960)

    Google Scholar 

  4. E. Savchenko, I. Khyzhniy, S. Uyutnov, A. Barabashov, G. Gumenchuk, A. Ponomaryov, V. Bondybey, Phys. Stat. Sol. C 12, 49–54 (2015)

    Google Scholar 

  5. E. Savchenko, I. Khyzhniy, S. Uyutnov, A. Barabashov, G. Gumenchuk, M.K. Beyer, A. Ponomaryov, V. Bondybey, J. Phys. Chem. A 119, 2475–2482 (2015)

    Article  Google Scholar 

  6. A.M. Bass, H.P. Broida, Phys. Rev. 101, 1740–1747 (1956)

    Article  ADS  Google Scholar 

  7. B.J. Fontana, J. Appl. Phys. 29, 1668–1673 (1958)

    Article  ADS  Google Scholar 

  8. M.J. Peyron, H.P. Broida, J. Chem. Phys. 30, 139–150 (1959)

    Article  ADS  Google Scholar 

  9. H.P. Broida, M.J. Peyron, J. Chem. Phys. 32, 1068–1071 (1960)

    Article  ADS  Google Scholar 

  10. E.B. Gordon, L.P. Mezhov-Deglin, O.F. Pugachev, JETP Lett. 19, 103–106 (1974)

    ADS  Google Scholar 

  11. E.B. Gordon, L.P. Mezhov-Deglin, O.F. Pugachev, V.V. Khmelenko, Cryogenics 16(9), 555–557 (1976)

    Article  ADS  Google Scholar 

  12. V.V. Khmelenko, H. Kunttu, D.M. Lee, J. Low Temp. Phys. 148, 1–31 (2007)

    Article  ADS  Google Scholar 

  13. V. Kiryukhin, B. Keimer, R.E. Boltnev, V.V. Khmelenko, E.B. Gordon, Phys. Rev. Lett. 79, 1774–1777 (1997)

    Article  ADS  Google Scholar 

  14. S.I. Kiselev, V.V. Khmelenko, D.M. Lee, V. Kiryukhin, R.E. Boltnev, E.B. Gordon, B. Keimer, Phys. Rev. B 65, 024517–12 (2001)

    Article  ADS  Google Scholar 

  15. V. Kiryukhin, E.B. Bernard, V.V. Khmelenko, R.E. Boltnev, N.V. Krainyukova, D.M. Lee, Phys. Rev. Lett. 98, 195506–4 (2007)

    Article  ADS  Google Scholar 

  16. N.V. Krainyukova, R.E. Boltnev, E.P. Bernard, V.V. Khmelenko, D.M. Lee, V. Kiryukhin, Phys. Rev. Lett. 109, 245505–5 (2012)

    Article  ADS  Google Scholar 

  17. E.P. Bernard, V.V. Khmelenko, D.M. Lee, J. Low Temp. Phys. 150, 516–524 (2008)

    Article  ADS  Google Scholar 

  18. S. Mao, R.E. Boltnev, V.V. Khmelenko, D.M. Lee, Low Temp. Phys. 38, 1037–1042 (2012)

    Article  ADS  Google Scholar 

  19. E.B. Gordon, V.V. Khmelenko, E.A. Popov, A.A. Pelmenev, O.F. Pugachev, Chem. Phys. Lett. 155, 301–304 (1989)

    Article  ADS  Google Scholar 

  20. E.P. Bernard, R.E. Boltnev, V.V. Khmelenko, D.M. Lee, J. Low Temp. Phys. 134, 199–204 (2004)

    Article  ADS  Google Scholar 

  21. R.E. Boltnev, I.N. Krushinskaya, A.A. Pelmenev, D.Y. Stolyarov, V.V. Khmelenko, Chem. Phys. Lett. 305, 217–224 (1999)

    Article  ADS  Google Scholar 

  22. V.V. Khmelenko, D.M. Lee, I.N. Krushinskaya, R.E. Boltnev, I.B. Bykhalo, A.A. Pelmenev, Low Temp. Phys. 38, 871–883 (2012)

    Article  Google Scholar 

  23. V.V. Khmelenko, A.A. Pelmenev, I.N. Krushinskaya, I.B. Bykhalo, R.E. Boltnev, D.M. Lee, J. Low Temp. Phys. 171, 302–308 (2013)

    Article  ADS  Google Scholar 

  24. R.E. Boltnev, I.B. Bykhalo, I.N. Krushinskaya, A.A. Pelmenev, V.V. Khmelenko, S. Mao, A. Meraki, S.C. Wilde, P.T. McColgan, D.M. Lee, J. Phys. Chem. A 119, 2438–2446 (2015)

    Article  Google Scholar 

  25. H. Kajihara, T. Okamura, F. Okada, S. Koda, Laser Chem. 15, 83–92 (1995)

    Article  Google Scholar 

  26. J. Goodman, L.E. Brus, J. Chem. Phys. 67, 1482–1490 (1977)

    Article  ADS  Google Scholar 

  27. S. Nourry, L. Krim, MNRAS 450, 2903–2914 (2015)

    Article  ADS  Google Scholar 

  28. M. Chergui, N. Schwentner, A. Tramer, Chem. Phys. Lett. 201, 187–193 (1993)

    Article  ADS  Google Scholar 

  29. O. Oehler, D.A. Smith, K. Dressler, J. Chem. Phys. 66, 2097–2107 (1977)

    Article  ADS  Google Scholar 

  30. I.Y. Fugol, Y.B. Poltotatski, Solid State Commun. 30, 497–500 (1979)

    Article  ADS  Google Scholar 

  31. T.G. Slanger, J. Chem. Phys. 69, 4779–4791 (1978)

    Article  ADS  Google Scholar 

  32. R.E. Boltnev, I.N. Krushinskaya, A.A. Pelmenev, E.A. Popov, D.Y. Stolyarov, V.V. Khmelenko, Low Temp. Phys. 31, 547–555 (2005)

    Article  ADS  Google Scholar 

  33. E.M. Horl, J. Mol. Spectrosc. 3, 425–449 (1959)

    Article  ADS  Google Scholar 

  34. J. Fournier, J. Deson, C. Vermeil, J. Chem. Phys. 68, 5062–5065 (1978)

    Article  ADS  Google Scholar 

  35. L.G. Piper, L.M. Cowles, W.T. Pawlins, J. Chem. Phys. 85, 3369–3378 (1986)

    Article  ADS  Google Scholar 

  36. F. Legay, N. Legay-Sommaire, Chem. Phys. Lett. 211, 516–522 (1993)

    Article  ADS  Google Scholar 

  37. R.A. Ruehrwein, J.S. Hashman, J.W. Edwards, J. Phys. Chem. 64, 1317–1322 (1960)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding from NSF Grant No. DMR 1209255.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Khmelenko.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meraki, A., Mao, S., McColgan, P.T. et al. Thermoluminescence Dynamics During Destructions of Porous Structures Formed by Nitrogen Nanoclusters in Bulk Superfluid Helium. J Low Temp Phys 185, 269–286 (2016). https://doi.org/10.1007/s10909-016-1557-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1557-1

Keywords