Thermoluminescence Dynamics During Destructions of Porous Structures Formed by Nitrogen Nanoclusters in Bulk Superfluid Helium

Abstract

We studied the dynamics of thermoluminescence during destruction of porous structures formed by nanoclusters of nitrogen molecules containing high concentrations of stabilized nitrogen atoms. The porous structures were formed in bulk superfluid helium by injection of the products of discharges in nitrogen–helium gas mixtures through the liquid helium surface. Fast recombination of nitrogen atoms during warming-up led to explosive destruction of the porous structures accompanied by bright flashes. Intense emissions from the \(\alpha \)-group of nitrogen atoms, the \(\beta \)-group of oxygen atoms and the Vegard–Kaplan bands of N\(_2\) molecules were observed at the beginning of destruction. At the end of destruction the M- and \(\beta \)-bands of NO molecules as well as bands of O\(_2\) molecules were also observed. Observation of the emissions from NO molecules at the end of destruction was explained by processes of accumulation of NO molecules in the system due to the large van der Waals interaction of NO molecules. For the first time, we observed the emission of the O\(_2\) molecules at the end of destruction of the porous nitrogen structures as a result of the (NO)\(_2\) dimer formation in solid nitrogen and subsequent processes leading to the appearance of excited O\(_2\) molecules.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    L. Vegard, Nature 113, 716–717 (1924)

    ADS  Article  Google Scholar 

  2. 2.

    L. Vegard, Nature 114, 357–359 (1924)

    ADS  Article  Google Scholar 

  3. 3.

    A.M. Bass, H.P. Broida, Formation and Trapping of Free Radicals (Academic, New York, 1960)

    Google Scholar 

  4. 4.

    E. Savchenko, I. Khyzhniy, S. Uyutnov, A. Barabashov, G. Gumenchuk, A. Ponomaryov, V. Bondybey, Phys. Stat. Sol. C 12, 49–54 (2015)

    Google Scholar 

  5. 5.

    E. Savchenko, I. Khyzhniy, S. Uyutnov, A. Barabashov, G. Gumenchuk, M.K. Beyer, A. Ponomaryov, V. Bondybey, J. Phys. Chem. A 119, 2475–2482 (2015)

    Article  Google Scholar 

  6. 6.

    A.M. Bass, H.P. Broida, Phys. Rev. 101, 1740–1747 (1956)

    ADS  Article  Google Scholar 

  7. 7.

    B.J. Fontana, J. Appl. Phys. 29, 1668–1673 (1958)

    ADS  Article  Google Scholar 

  8. 8.

    M.J. Peyron, H.P. Broida, J. Chem. Phys. 30, 139–150 (1959)

    ADS  Article  Google Scholar 

  9. 9.

    H.P. Broida, M.J. Peyron, J. Chem. Phys. 32, 1068–1071 (1960)

    ADS  Article  Google Scholar 

  10. 10.

    E.B. Gordon, L.P. Mezhov-Deglin, O.F. Pugachev, JETP Lett. 19, 103–106 (1974)

    ADS  Google Scholar 

  11. 11.

    E.B. Gordon, L.P. Mezhov-Deglin, O.F. Pugachev, V.V. Khmelenko, Cryogenics 16(9), 555–557 (1976)

    ADS  Article  Google Scholar 

  12. 12.

    V.V. Khmelenko, H. Kunttu, D.M. Lee, J. Low Temp. Phys. 148, 1–31 (2007)

    ADS  Article  Google Scholar 

  13. 13.

    V. Kiryukhin, B. Keimer, R.E. Boltnev, V.V. Khmelenko, E.B. Gordon, Phys. Rev. Lett. 79, 1774–1777 (1997)

    ADS  Article  Google Scholar 

  14. 14.

    S.I. Kiselev, V.V. Khmelenko, D.M. Lee, V. Kiryukhin, R.E. Boltnev, E.B. Gordon, B. Keimer, Phys. Rev. B 65, 024517–12 (2001)

    ADS  Article  Google Scholar 

  15. 15.

    V. Kiryukhin, E.B. Bernard, V.V. Khmelenko, R.E. Boltnev, N.V. Krainyukova, D.M. Lee, Phys. Rev. Lett. 98, 195506–4 (2007)

    ADS  Article  Google Scholar 

  16. 16.

    N.V. Krainyukova, R.E. Boltnev, E.P. Bernard, V.V. Khmelenko, D.M. Lee, V. Kiryukhin, Phys. Rev. Lett. 109, 245505–5 (2012)

    ADS  Article  Google Scholar 

  17. 17.

    E.P. Bernard, V.V. Khmelenko, D.M. Lee, J. Low Temp. Phys. 150, 516–524 (2008)

    ADS  Article  Google Scholar 

  18. 18.

    S. Mao, R.E. Boltnev, V.V. Khmelenko, D.M. Lee, Low Temp. Phys. 38, 1037–1042 (2012)

    ADS  Article  Google Scholar 

  19. 19.

    E.B. Gordon, V.V. Khmelenko, E.A. Popov, A.A. Pelmenev, O.F. Pugachev, Chem. Phys. Lett. 155, 301–304 (1989)

    ADS  Article  Google Scholar 

  20. 20.

    E.P. Bernard, R.E. Boltnev, V.V. Khmelenko, D.M. Lee, J. Low Temp. Phys. 134, 199–204 (2004)

    ADS  Article  Google Scholar 

  21. 21.

    R.E. Boltnev, I.N. Krushinskaya, A.A. Pelmenev, D.Y. Stolyarov, V.V. Khmelenko, Chem. Phys. Lett. 305, 217–224 (1999)

    ADS  Article  Google Scholar 

  22. 22.

    V.V. Khmelenko, D.M. Lee, I.N. Krushinskaya, R.E. Boltnev, I.B. Bykhalo, A.A. Pelmenev, Low Temp. Phys. 38, 871–883 (2012)

    Article  Google Scholar 

  23. 23.

    V.V. Khmelenko, A.A. Pelmenev, I.N. Krushinskaya, I.B. Bykhalo, R.E. Boltnev, D.M. Lee, J. Low Temp. Phys. 171, 302–308 (2013)

    ADS  Article  Google Scholar 

  24. 24.

    R.E. Boltnev, I.B. Bykhalo, I.N. Krushinskaya, A.A. Pelmenev, V.V. Khmelenko, S. Mao, A. Meraki, S.C. Wilde, P.T. McColgan, D.M. Lee, J. Phys. Chem. A 119, 2438–2446 (2015)

    Article  Google Scholar 

  25. 25.

    H. Kajihara, T. Okamura, F. Okada, S. Koda, Laser Chem. 15, 83–92 (1995)

    Article  Google Scholar 

  26. 26.

    J. Goodman, L.E. Brus, J. Chem. Phys. 67, 1482–1490 (1977)

    ADS  Article  Google Scholar 

  27. 27.

    S. Nourry, L. Krim, MNRAS 450, 2903–2914 (2015)

    ADS  Article  Google Scholar 

  28. 28.

    M. Chergui, N. Schwentner, A. Tramer, Chem. Phys. Lett. 201, 187–193 (1993)

    ADS  Article  Google Scholar 

  29. 29.

    O. Oehler, D.A. Smith, K. Dressler, J. Chem. Phys. 66, 2097–2107 (1977)

    ADS  Article  Google Scholar 

  30. 30.

    I.Y. Fugol, Y.B. Poltotatski, Solid State Commun. 30, 497–500 (1979)

    ADS  Article  Google Scholar 

  31. 31.

    T.G. Slanger, J. Chem. Phys. 69, 4779–4791 (1978)

    ADS  Article  Google Scholar 

  32. 32.

    R.E. Boltnev, I.N. Krushinskaya, A.A. Pelmenev, E.A. Popov, D.Y. Stolyarov, V.V. Khmelenko, Low Temp. Phys. 31, 547–555 (2005)

    ADS  Article  Google Scholar 

  33. 33.

    E.M. Horl, J. Mol. Spectrosc. 3, 425–449 (1959)

    ADS  Article  Google Scholar 

  34. 34.

    J. Fournier, J. Deson, C. Vermeil, J. Chem. Phys. 68, 5062–5065 (1978)

    ADS  Article  Google Scholar 

  35. 35.

    L.G. Piper, L.M. Cowles, W.T. Pawlins, J. Chem. Phys. 85, 3369–3378 (1986)

    ADS  Article  Google Scholar 

  36. 36.

    F. Legay, N. Legay-Sommaire, Chem. Phys. Lett. 211, 516–522 (1993)

    ADS  Article  Google Scholar 

  37. 37.

    R.A. Ruehrwein, J.S. Hashman, J.W. Edwards, J. Phys. Chem. 64, 1317–1322 (1960)

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge funding from NSF Grant No. DMR 1209255.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Khmelenko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meraki, A., Mao, S., McColgan, P.T. et al. Thermoluminescence Dynamics During Destructions of Porous Structures Formed by Nitrogen Nanoclusters in Bulk Superfluid Helium. J Low Temp Phys 185, 269–286 (2016). https://doi.org/10.1007/s10909-016-1557-1

Download citation

Keywords

  • Quantum solids
  • Thermoluminescence
  • Nanoclusters
  • Impurities and diffusion