Journal of Low Temperature Physics

, Volume 184, Issue 3–4, pp 568–575

Design and Deployment of a Multichroic Polarimeter Array on the Atacama Cosmology Telescope

  • R. Datta
  • J. Austermann
  • J. A. Beall
  • D.  Becker
  • K. P. Coughlin
  • S. M. Duff
  • P. A. Gallardo
  • E. Grace
  • M. Hasselfield
  • S. W. Henderson
  • G. C. Hilton
  • S. P. Ho
  • J. Hubmayr
  • B. J. Koopman
  • J. V. Lanen
  • D. Li
  • J. McMahon
  • C. D. Munson
  • F. Nati
  • M. D. Niemack
  • L. Page
  • C. G. Pappas
  • M. Salatino
  • B. L. Schmitt
  • A. Schillaci
  • S. M. Simon
  • S. T. Staggs
  • J. R. Stevens
  • E. M. Vavagiakis
  • J. T. Ward
  • E. J. Wollack
Article
  • 156 Downloads

Abstract

We present the design and the preliminary on-sky performance with respect to beams and passbands of a multichroic polarimeter array covering the 90 and 146 GHz cosmic microwave background bands and its enabling broad-band optical system recently deployed on the Atacama Cosmology Telescope (ACT). The constituent pixels are feedhorn-coupled multichroic polarimeters fabricated at NIST. This array is coupled to the ACT telescope via a set of three silicon lenses incorporating novel broad-band metamaterial anti-reflection coatings. This receiver represents the first multichroic detector array deployed for a CMB experiment and paves the way for the extensive use of multichroic detectors and broad-band optical systems in the next generation of CMB experiments.

Keywords

Anti-reflection coating Cosmic microwave background Feedhorn Millimeter wave Polarimeter Silicon lenses Superconducting detectors TES 

References

  1. 1.
    D. Baumann et al., AIP Conf. Proc. 1141, 10–120 (2009). doi:10.1063/1.3160885 ADSCrossRefGoogle Scholar
  2. 2.
    K. Smith et al., AIP Conf. Proc. 1141, 121–178 (2009). doi:10.1063/1.3160886 ADSCrossRefGoogle Scholar
  3. 3.
    W. Hu, Phys. Rev. D 62, 043007 (2000). doi:10.1103/PhysRevD.62.043007 ADSCrossRefGoogle Scholar
  4. 4.
    D. Hanson et al., Phys. Rev. Lett. 111, 141301 (2013). doi:10.1103/PhysRevLett.111.141301
  5. 5.
    The POLARBEAR Collaboration, arXiv:1403.2369v (2014). doi:10.1088/0004-637X/794/2/171
  6. 6.
    BICEP2 Collaboration, Astrophys. J. 792, 62 (2014). doi:10.1088/0004-37X/792/1/62
  7. 7.
    A. van Engelen et al., Astrophys. J. 808(1), 7 (2015). doi:10.1088/0004-637X/808/1/7
  8. 8.
    BICEP2/Keck, Planck Collaborations, Phys. Rev. Lett. 114, 101301 (2015). doi:10.1103/PhysRevLett.114.101301
  9. 9.
    M.D. Niemack et al., Proc. SPIE 7741, 77411S (2010). doi:10.1117/12.857464 CrossRefGoogle Scholar
  10. 10.
    Y. Takeichi, T. Hashimoto, F. Takeda, IEEE Trans. Microw. Theory Tech. MTT-19, 947–950 (1971)Google Scholar
  11. 11.
    J. McMahon et al., J. Low Temp. Phys 167, 5–6 (2012). doi:10.1007/s10909-012-0612-9 CrossRefGoogle Scholar
  12. 12.
    R. Knoechel, B. Mayer IEEE MTT-S international microwave symposium digest, 1, 471–474 (1990)Google Scholar
  13. 13.
    Study of the Experimental Probe of Inflationary Cosmology-Intermediate Mission for NASA’s Einstein Inflation Probe, http://cmbpol.uchicago.edu/depot/pdf/epic-im-report.pdf
  14. 14.
    R. Datta et al., J. Low Temp. Phys. 176(5–6), 670 (2014). doi:10.1007/s10909-014-1134-4 ADSGoogle Scholar
  15. 15.
    J. Britton et al., Proc. SPIE 7741, 11 (2010). doi:10.1117/12.857885 Google Scholar
  16. 16.
    D.S. Swetz et al., Astrophys. J. Suppl. Ser. 194(2), 41 (2011). doi:10.1088/0067-0049/194/2/41 ADSCrossRefGoogle Scholar
  17. 17.
    J.W. Fowler et al., Appl. Opt. 46, 3444–3454 (2007). doi:10.1364/AO.46.003444 ADSCrossRefGoogle Scholar
  18. 18.
    C. Tucker, P. Ade, Proc. SPIE 6275 (2006)Google Scholar
  19. 19.
    R. Datta et al., Appl. Opt. 52(36), 8747 (2013). doi:10.1364/AO.52.008747 ADSCrossRefGoogle Scholar
  20. 20.
    A. Kogut et al., JCAP 07, 07 (2011). doi:10.1088/1475-7516/2011/07/025 MathSciNetGoogle Scholar
  21. 21.
    L. Page et al., Astrophys. J. 585, 566–586 (2003). doi:10.1086/377223 ADSCrossRefGoogle Scholar
  22. 22.
    J. Dunkley et al., JCAP 2013(07), 025 (2013). doi:10.1088/1475-7516/2013/07/025 CrossRefGoogle Scholar
  23. 23.
    S.P. Ho et al., J. Low Temp. Phys., in this Special IssueGoogle Scholar
  24. 24.
    S.W. Henderson et al., J. Low Temp. Phys., in this Special IssueGoogle Scholar
  25. 25.
    S. Duff et al., J. Low Temp. Phys., in this Special IssueGoogle Scholar
  26. 26.
    D. Li et al., J. Low Temp. Phys., in this Special IssueGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • R. Datta
    • 1
  • J. Austermann
    • 2
  • J. A. Beall
    • 2
  • D.  Becker
    • 2
  • K. P. Coughlin
    • 1
  • S. M. Duff
    • 2
  • P. A. Gallardo
    • 3
  • E. Grace
    • 4
  • M. Hasselfield
    • 5
  • S. W. Henderson
    • 3
  • G. C. Hilton
    • 2
  • S. P. Ho
    • 4
  • J. Hubmayr
    • 2
  • B. J. Koopman
    • 3
  • J. V. Lanen
    • 2
  • D. Li
    • 2
    • 6
  • J. McMahon
    • 1
  • C. D. Munson
    • 1
  • F. Nati
    • 7
  • M. D. Niemack
    • 3
  • L. Page
    • 4
  • C. G. Pappas
    • 4
  • M. Salatino
    • 4
  • B. L. Schmitt
    • 7
  • A. Schillaci
    • 4
    • 8
  • S. M. Simon
    • 4
  • S. T. Staggs
    • 4
  • J. R. Stevens
    • 3
  • E. M. Vavagiakis
    • 3
  • J. T. Ward
    • 7
  • E. J. Wollack
    • 9
  1. 1.Department of PhysicsUniversity of MichiganAnn ArborUSA
  2. 2.NIST Quantum Devices GroupBoulderUSA
  3. 3.Department of PhysicsCornell UniversityIthacaUSA
  4. 4.Joseph Henry Laboratories of Physics, Jadwin HallPrinceton UniversityPrincetonUSA
  5. 5.Department of Astrophysical Sciences, Peyton HallPrinceton UniversityPrincetonUSA
  6. 6.SLAC National Accelerator LaboratoryMenlo ParkUSA
  7. 7.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaUSA
  8. 8.Sociedad Radiosky Asesorias de Ingenieria Limitada Lincoyan 54ConcepciónChile
  9. 9.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations