Skip to main content
Log in

Non-equilibrium Properties of a Pumped-Decaying Bose-Condensed Electron–Hole Gas in the BCS–BEC Crossover Region

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We theoretically investigate a Bose-condensed exciton gas out of equilibrium. Within the framework of the combined BCS-Leggett strong-coupling theory with the non-equilibrium Keldysh formalism, we show how the Bose–Einstein condensation (BEC) of excitons is suppressed to eventually disappear, when the system is in the non-equilibrium steady state. The supply of electrons and holes from the bath is shown to induce quasi-particle excitations, leading to the partial occupation of the upper branch of Bogoliubov single-particle excitation spectrum. We also discuss how this quasi-particle induction is related to the suppression of exciton BEC, as well as the stability of the steady state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We briefly note that, some exciton systems with long carrier lifetime (e.g., excitons in Si) can be regarded as (quasi-)equilibrium system. We also note that cold atom systems always have some decay of atoms from the trap, although they are negligible.

References

  1. J.M. Blatt, K.W. Böer, W. Brandt, Phys. Rev. 126, 1691 (1962)

    Article  ADS  Google Scholar 

  2. L.V. Keldysh, A.N. Kozlov, Sov. Phys. JETP 27, 521 (1968)

    ADS  Google Scholar 

  3. A.A. High et al., Nature 483, 584 (2012)

    Article  ADS  Google Scholar 

  4. J.P. Eisenstein, A.H. MacDonald, Nature 432, 691 (2004)

    Article  ADS  Google Scholar 

  5. J. Kasprzak et al., Nature 443, 409 (2006)

    Article  ADS  Google Scholar 

  6. S. Utsunomiya et al., Nat. Phys. 4, 700 (2008)

    Article  Google Scholar 

  7. K.G. Lagoudakis et al., Nat. Phys. 4, 706 (2008)

    Article  Google Scholar 

  8. A. Amo et al., Nat. Phys. 5, 805 (2008)

    Article  Google Scholar 

  9. H. Stolz et al., New. J. Phys. 14, 105007 (2012)

    Article  ADS  Google Scholar 

  10. K. Yoshioka et al., Phys. Rev. B 88, 041201(R) (2013)

    Article  ADS  Google Scholar 

  11. M. Alloing et al., Eur. Phys. Lett. 107, 10012 (2014)

    Article  ADS  Google Scholar 

  12. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  13. C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004)

    Article  ADS  Google Scholar 

  14. M.W. Zwierlein et al., Phys. Rev. Lett. 92, 120403 (2004)

    Article  ADS  Google Scholar 

  15. D.M. Eagles, Phys. Rev. 186, 456 (1969)

    Article  ADS  Google Scholar 

  16. A.J. Leggett, Modern Trends in the Theory of Condensed Matter (Springer, Berlin, 1980)

    Google Scholar 

  17. C. Comte, P. Nozières, J. Phys. (Paris) 43, 1069 (1982)

    Article  Google Scholar 

  18. S.A. Moskalenko, D.W. Snoke, Bose–Einstein Condensation of Excitons and Biexcitons and Coherent Nonlinear Optics with Excitons (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  19. M. Falkenau et al., Phys. Rev. A 106, 163002 (2011)

    Google Scholar 

  20. J. Mahnke et al., J. Phys. B 48, 165301 (2015)

    Article  ADS  Google Scholar 

  21. J. Rammer, Quantum Field Theory of Non-equilibrium States (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  22. M.H. Szymańska, J. Keeling, P.B. Littlewood, Phys. Rev. Lett. 96, 230602 (2006)

    Article  ADS  Google Scholar 

  23. M. Yamaguchi, K. Kamide, T. Ogawa, Y. Yamamoto, New J. Phys. 14, 065001 (2012)

    Article  ADS  Google Scholar 

  24. J.R. Schrieffer, Theory of Superconductivity (Benjamin Cummings, New York, 1983)

    MATH  Google Scholar 

  25. M. Tinkham, Introduction to Superconductivity (Dover, New York, 1975)

    Google Scholar 

  26. M. Yamaguchi et al., Phys. Rev. Lett. 111, 026404 (2013)

    Article  ADS  Google Scholar 

  27. M. Yamaguchi et al., Phys. Rev. B 91, 115129 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank M. Yamaguchi, R. Okuyama, D. Inotani, H. Tajima, and A. Edelman for useful discussions. RH was supported by a Grand-in-Aid for JSPS fellows. This work was supported by KiPAS project in Keio University. YO was also supported by Grant-in-Aid for Scientific research from MEXT and JSPS in Japan (25400418, 15H00840). Work at Argonne National Laboratory is supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hanai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanai, R., Littlewood, P.B. & Ohashi, Y. Non-equilibrium Properties of a Pumped-Decaying Bose-Condensed Electron–Hole Gas in the BCS–BEC Crossover Region. J Low Temp Phys 183, 127–135 (2016). https://doi.org/10.1007/s10909-016-1552-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1552-6

Keywords

Navigation