Skip to main content

Advertisement

Log in

Development of Superconducting Tunnel Junction X-ray Detector with High Absorption Yields Utilizing Silicon Pixel Absorbers

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A superconducting tunnel junction (STJ) array detector along with silicon pixel absorbers (STJ–SPA) is fabricated to achieve high detection efficiency at X-ray energies below 10 keV. The STJ pixels have dimensions of 100 \(\upmu \)m \(\times \) 100 \(\upmu \)m and are composed of Nb–Al/AlO\(_{X}\)/Al–Nb thin layers. The SPAs are also 100 \(\upmu \)m \(\times \) 100 \(\upmu \)m and have a depth of 400 \(\upmu \)m, and are isolated from each other by a deep trench with a depth of 350 \(\upmu \)m. The detection efficiency of the STJ–SPA exceeds 95 % at X-ray energies below 10 keV, and its energy resolution is 82 eV FWHM, as measured at the Si K\(\upalpha \) line at 1740 eV. By means of the STJ–SPA detector, the X-ray absorption spectrum of the light element sulfur with a concentration of less than 0.1 wt% in a soda-lime glass sample was successfully acquired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P. Fons, H. Tampo, A.V. Kolobov, M. Ohkubo, S. Niki, J. Tominaga, Phys. Rev. Lett. 96, 045504 (2006). doi:10.1103/PhysRevLett.96.045504

    Article  ADS  Google Scholar 

  2. S. Friedrich, J. Synchron. Rad. 13, 159 (2006). doi:10.1107/S090904950504197X

    Article  Google Scholar 

  3. S. Shiki, N. Zen, M. Ukibe, M. Ohkubo, A.I.P. Conf. Ser. 1185, 409 (2009). doi:10.1063/1.3292365

    ADS  Google Scholar 

  4. S. Shiki, M. Ukibe, Y. Kitajima, M. Ohkubo, J. Low Temp. Phys. 167, 748 (2012). doi:10.1007/s10909-012-0526-6

    Article  ADS  Google Scholar 

  5. S. Shiki, M. Ukibe, N. Matsubayashi, N. Zen, M. Koike, Y. Kitajima, M. Ohkubo, J. Low Temp. Phys. 176, 604 (2014). doi:10.1007/s10909-013-1074-4

    Article  ADS  Google Scholar 

  6. M. Ukibe, S. Shiki, Y. Kitajima, M. Ohkubo, Jpn. J. Appl. Phys. 51, 010115 (2012). doi:10.1143/JJAP.51.010115

    Article  ADS  Google Scholar 

  7. M. Ohkubo, S. Shiki, M. Ukibe, N. Matsubayashi, Y. Kitajima, S. Nagamachi, Sci. Rep. 2, 831 (2012). doi:10.1038/srep00831

    Article  ADS  Google Scholar 

  8. M. Kurakado, A. Matsumura, T. Takahashi, S. Ito, R. Katano, Y. Isozumi, Rev. Sci. Instrum. 62, 156 (1991). doi:10.1063/1.1142299

    Article  ADS  Google Scholar 

  9. M. Kurakado, S. Kamihirata, A. Kagamihata, K. Hirota, H. Hashimoto, H. Sato, H. Hotchi, H.M. Shimizu, K. Taniguchi, Nucl. Instrum. Methods Phys. Res. A 506, 134 (2003). doi:10.1016/S0168-9002(03)01370-6

    Article  ADS  Google Scholar 

  10. H. Sato, Y. Takizawa, S. Shiki, C. Otani, M. Kurakado, H.M. Shimizu, Nucl. Instrum. Methods Phys. Res. A 520, 613 (2004). doi:10.1016/j.nima.2003.11.329

    Article  ADS  Google Scholar 

  11. M. Kurakado, H. Sato, Y. Takizawa, S. Shiki, H.M. Shimizu, Appl. Phys. Lett. 86, 083503 (2005). doi:10.1063/1.1866509

    Article  ADS  Google Scholar 

  12. M. Kurakado, E.C. Kirk, H. Sato, I. Jerjen, S. Shiki, H.M. Shimizu, A. Zehnder, K. Taniguchi, Nucl. Instrum. Methods Phys. Res. A 559, 480 (2006). doi:10.1016/j.nima.2005.12.080

    Article  ADS  Google Scholar 

  13. M. Kurakado, E.C. Kirk, S. Shiki, H. Sato, K. Mishima, C. Otani, K. Taniguchi, Nucl. Instrum. Methods Phys. Res. A 621, 431 (2010). doi:10.1016/j.nima.2010.05.042

    Article  ADS  Google Scholar 

  14. D.M. Schlosser, P. Lechner, G. Lutz, A. Niculae, H. Soltau, S. Strouder, R. Eckhardt, K. Hermenau, G. Schaller, F. Schopper, O. Jaritschin, A. Liebel, A. Simsek, C. Fiorini, A. Longoni, Nucl. Instrum. Methods Phys. Res. A 624, 270 (2010). doi:10.1016/j.nima.2010.04.038

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant No. 25390142. This work was performed under the approval of the Photon Factory Program Advisory Committee (Proposal No. 2013G642).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigetomo Shiki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiki, S., Fujii, G., Ukibe, M. et al. Development of Superconducting Tunnel Junction X-ray Detector with High Absorption Yields Utilizing Silicon Pixel Absorbers. J Low Temp Phys 184, 206–210 (2016). https://doi.org/10.1007/s10909-016-1537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1537-5

Keywords

Navigation