Skip to main content
Log in

Vortex Properties of Nanosized Superconducting Strips with One Central Weak Link Under an Applied Current Drive

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The static and dynamic properties of vortices in a nanosized superconducting strip with one central weak link (weakly superconducting region or normal metal) are investigated in the presence of external magnetic and electric fields. The time-dependent Ginzburg–Landau equations are used to describe the electronic transport and have been solved numerically by a finite element analysis. Anisotropy is included through the spatially dependent anisotropy coefficient \(\zeta \) in different layers of the sample. Our results show that the energy barrier for vortices to enter a weak link is smaller than that for vortices to enter the superconducting layers. The magnetization shows periodic oscillations. With the introduction of the weak link, the period of oscillations decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.R. Berdiyorov, M.V. Milošević, B.J. Baelus, F.M. Peeters, Phys. Rev. B 70, 024508 (2004)

    Article  ADS  Google Scholar 

  2. L.-F. Zhang, L. Covaci, M.V. Milošević, G.R. Berdiyorov, F.M. Peeters, Phys. Rev. Lett. 109, 107001 (2012)

    Article  ADS  Google Scholar 

  3. Xu Ben, M.V. Milošević, S.-H. Lin, F.M. Peeters, B. Jankó, Phys. Rev. Lett. 107, 057002 (2011)

    Article  ADS  Google Scholar 

  4. Xu Ben, M.V. Milošević, F.M. Peeters, Phys. Rev. B 77, 144509 (2008)

    Article  Google Scholar 

  5. Xu Ben, M.V. Milošević, F.M. Peeters, Phys. Rev. B 81, 064501 (2010)

    Google Scholar 

  6. V.A. Schweigert, F.M. Peeters, P.S. Deo, Phys. Rev. Lett. 81, 2783 (1998)

    Article  ADS  Google Scholar 

  7. A. Kanda, B.J. Baelus, F.M. Peeters, K. Kadowaki, Y. Ootuka, Phys. Rev. Lett. 93, 257002 (2004)

    Article  ADS  Google Scholar 

  8. M.V. Milošević, A. Kanda, S. Hatsumi, F.M. Peeters, Y. Ootuka, Phys. Rev. Lett. 103, 217003 (2009)

    Article  ADS  Google Scholar 

  9. T. Cren, L. Serrier-Garcia, F. Debontridder, D. Roditchev, Phys. Rev. Lett. 107, 097202 (2011)

    Article  ADS  Google Scholar 

  10. T. Winiecki, C.S. Adams, J. Comput. Phys. 179, 127 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  11. T. Winiecki, C.S. Adams, Phys. Rev. B 65, 104517 (2002)

    Article  ADS  Google Scholar 

  12. B.J. Baelus, F.M. Peeters, Phys. Rev. B 65, 104515 (2002)

    Article  ADS  Google Scholar 

  13. L. Peng, Z. Wei, D. Xu, J. Supercond. Nov. Magn. 27, 1991 (2014)

    Article  Google Scholar 

  14. G.Q. Zha, S.P. Zhou, B.H. Zhu, Y.M. Shi, H.W. Zhao, Phys. Rev. B 74, 024527 (2006)

    Article  ADS  Google Scholar 

  15. G.Q. Zha, S.P. Zhou, B.H. Zhu, Y.M. Shi, Phys. Rev. B 73, 104508 (2006)

    Article  ADS  Google Scholar 

  16. W.H. Kleiner, L.M. Roth, S.H. Autler, Phys. Rev. 133, A1226 (1964)

    Article  ADS  Google Scholar 

  17. L.F. Chibotaru, A. Ceulemans, V. Bruyndoncx, V.V. Moshchalkov, Nature (London) 408, 833 (2000)

    Article  ADS  Google Scholar 

  18. R. Geurts, M.V. Milošević, F.M. Peeters, Phys. Rev. Lett. 97, 137002 (2006)

    Article  ADS  Google Scholar 

  19. R. Geurts, M.V. Milošević, J. Albino Aguiar, F.M. Peeters, Phys. Rev. B 87, 024501 (2013)

    Article  ADS  Google Scholar 

  20. L. Peng, J. Lin, Y. Zhou, Y. Zhang, J. Supercond. Nov. Magn. 28, 3507 (2015)

    Article  Google Scholar 

  21. G.R. Berdiyorov, A.R.D.C. Romaguera, M.V. Milošević, M.M. Doria, L. Covaci, F.M. Peeters, Eur. Phys. J. B 85, 130 (2012)

    Article  ADS  Google Scholar 

  22. G. Deutscher, P.G. de Gennes, in Superconductivity, Chap 17, ed. by R.D. Parks (Marcel Dekker, New York, 1969)

  23. Chao-Yu. Liu, G.R. Berdiyorov, M.V. Milošević, Phys. Rev. B 83, 104524 (2011)

    Article  ADS  Google Scholar 

  24. G.R. Berdiyorov, S.E. Savel’ev, M.V. Milošević, F.V. Kusmartsev, F.M. Peeters, Phys. Rev. B 87, 184510 (2013)

    Article  ADS  Google Scholar 

  25. G.R. Berdiyorov, M.V. Milošević, S. Savel’ev, F. Kusmartsev, F.M. Peeters, Phys. Rev. B 90, 134505 (2014)

    Article  ADS  Google Scholar 

  26. G.R. Berdiyorov, M.V. Milošević, F.M. Peeters, Phys. Rev. B 79, 184506 (2009)

    Article  ADS  Google Scholar 

  27. G.R. Berdiyorov, M.V. Milošević, L. Covaci, F.M. Peeters, Phys. Rev. Lett. 107, 177008 (2011)

    Article  ADS  Google Scholar 

  28. M.V. Milošević, R. Geurts, Physica C 470, 791 (2010)

    Article  ADS  Google Scholar 

  29. Ž.L. Jelić, M.V. Milošević, J. Van de Vondel, A.V. Silhanek, Sci. Rep. 5, 14604 (2015). doi:10.1038/srep14604

    Article  ADS  Google Scholar 

  30. G.R. Berdiyorov, M.V. Milošević, M.L. Latimer, Z.L. Xiao, W.K. Kwok, F.M. Peeters, Phys. Rev. Lett. 109, 057004 (2012)

    Article  ADS  Google Scholar 

  31. R. Córdoba, T.I. Baturina, J. Sesé, A. Yu Mironov, J.M. De Teresa, M.R. Ibarra, D.A. Nasimov, A.K. Gutakovskii, A.V. Latyshev, I. Guillamón, H. Suderow, S. Vieira, Nat. Commun. 4, 1437 (2013). doi:10.1038/ncomms2437

    Article  Google Scholar 

  32. A.I. Gubin, K.S. Il’in, S.A. Vitusevich, M. Siegel, N. Klein, Phys. Rev. B 72, 064503 (2005)

    Article  ADS  Google Scholar 

  33. D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. Cuppens, L. Neeman, A. Finkler, Y. Segev, Y. Myasoedov, M.L. Rappaport, M.E. Huber, E. Zeldov, Nat. Nanotechnol. 8, 639 (2013)

    Article  ADS  Google Scholar 

  34. L. Komendová, Y. Chen, A.A. Shanenko, M.V. Milošević, F.M. Peeters, Phys. Rev. Lett. 108, 207002 (2012)

    Article  ADS  Google Scholar 

  35. R. Geurts, M.V. Milošević, F.M. Peeters, Phys. Rev. B 81, 214514 (2010)

    Article  ADS  Google Scholar 

  36. C. Juan, J.C. Piña, C.C. de Souza Silva, M.V. Milošević, Phys. Rev. B 86, 024512 (2012)

    Article  ADS  Google Scholar 

  37. R.M. da Silva, M.V. Milošević, D. Domínguez, F.M. Peeters, J. Albino Aguiar, Appl. Phys. Lett. 105, 232601 (2014)

    Article  ADS  Google Scholar 

  38. G.R. Berdiyorov, M.V. Milošević, F.M. Peeters, Phys. Rev. B 80, 214509 (2009)

    Article  ADS  Google Scholar 

  39. G.X. Miao, M.D. Mascaro, C.H. Nam, C.A. Ross, J.S. Moodera, Appl. Phys. Lett. 99, 032501 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is sponsored by the Science and Technology Commission of Shanghai Municipality (14521102800), the National Natural Science Foundation of China (51202141), the Opening Project of Shanghai Key Laboratory of High Temperature Superconductors (14DZ2260700), the Natural Science Foundation of Shanghai (No. 13ZR1417600), and the Innovation Program of Shanghai Municipal Education Commission (No. 14YZ132), .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Peng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, L., Cai, C. Vortex Properties of Nanosized Superconducting Strips with One Central Weak Link Under an Applied Current Drive. J Low Temp Phys 183, 371–378 (2016). https://doi.org/10.1007/s10909-016-1533-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1533-9

Keywords

Navigation