Journal of Low Temperature Physics

, Volume 184, Issue 3–4, pp 845–851 | Cite as

Pulse-Shape Analysis of Ionization Signals in Cryogenic Ge Detectors for Dark Matter

  • N. FoersterEmail author
  • A. Broniatowski
  • K. Eitel
  • S. Marnieros
  • B. Paul
  • M.-C. Piro
  • B. Siebenborn
  • The EDELWEISS Collaboration


The detectors of the direct dark matter search experiment EDELWEISS consist of high-purity germanium crystals operated at cryogenic temperatures (\(\mathrm {{<}20\,mK}\)) and low electric fields (\(\mathrm {{<}1\,V/cm}\)). The surface discrimination is based on the simultaneous measurement of the charge amplitudes on different sets of electrodes. As the rise time of a charge signal strongly depends on the location of an interaction in the crystal, a time-resolved measurement can also be used to identify surface interactions. This contribution presents the results of a study of the discrimination power of the rise time parameter from a hot carrier transport simulation in combination with time-resolved measurements using an EDELWEISS-type detector in a test cryostat at ground level. We show the setup for the time-resolved ionization signal read-out in the EDELWEISS-III experiment and first results from data taking in the underground laboratory of Modane.


Dark matter Cryogenic germanium detector Hot carrier transport Pulse-shape analysis Event localization 



N. F. acknowledges funding by the DFG Excellence Initiative through the Karlsruhe School of Elementary Particle and Astroparticle Physics: Science and Technology (KSETA). A.B. thanks KSETA for supporting visits to KIT as KSETA guest scientist. This work has been funded in part by the P2IO LabEx (ANR-10-LABX-0038) in the framework “Investissements d’Avenir” (ANR-11-IDEX-0003-01) managed by the French National Research Agency (ANR).


  1. 1.
    S. Marnieros et al., AIP Conf. Proc. 1185, 635 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    P. Luke, J. Appl. Phys. 64, 6858 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    R. Agnese et al., SuperCDMS collaboration. Phys. Rev. Lett. 112, 041302 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    E. Armengaud et al., EDELWEISS collaboration. Phys. Rev. D 86, 1 (2012)CrossRefGoogle Scholar
  5. 5.
    S. Marnieros et al., J. Low Temp. Phys. 176, 182 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    X. Defay et al., EDELWEISS collaboration. J. Low Temp. Phys. 151, 896 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    G.T. Chapman, Nucl. Instrum. Methods 52, 101 (1967)ADSCrossRefGoogle Scholar
  8. 8.
    M.I. Nathan, Phys. Rev. 130, 2201 (1963)ADSCrossRefGoogle Scholar
  9. 9.
    A. Broniatowski, J. Low Temp. Phys. 176, 860 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    M.-C. Piro et al., J. Low Temp. Phys. 176, 796 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Z. He, Nucl. Instrum. Methods A 463, 250 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    A. Broniatowski et al., EDELWEISS collaboration. NIM A 559, 378 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • N. Foerster
    • 1
    Email author
  • A. Broniatowski
    • 1
    • 2
  • K. Eitel
    • 3
  • S. Marnieros
    • 2
  • B. Paul
    • 4
  • M.-C. Piro
    • 2
    • 5
  • B. Siebenborn
    • 3
  • The EDELWEISS Collaboration
  1. 1.Institute of Experimental Nuclear Physics (EKP)Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Centre des Sciences Nucléaires et des Sciences de la Matière (IN2P3/CNRS)OrsayFrance
  3. 3.Institute of Nuclear Physics (IKP)Karlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.CEA, Centre d’Etudes Saclay, IRFUGif-sur-Yvette CedexFrance
  5. 5.Department of Physics, Applied Physics and AstronomyRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations