Journal of Low Temperature Physics

, Volume 184, Issue 3–4, pp 661–667 | Cite as

Microfabrication Technology for Large Lekid Arrays: From Nika2 to Future Applications

  • J. Goupy
  • A. Adane
  • A. Benoit
  • O. Bourrion
  • M. Calvo
  • A. Catalano
  • G. Coiffard
  • C. Hoarau
  • S. Leclercq
  • H. Le Sueur
  • J. Macias-Perez
  • A. Monfardini
  • I. Peck
  • K. Schuster
Article

Abstract

The lumped element kinetic inductance detectors (LEKID) demonstrated full maturity in the New IRAM KID Arrays (NIKA) instrument. These results allow directly comparing LEKID performance with other competing technologies (TES, doped silicon) in the mm and sub-mm range. A continuing effort is ongoing to improve the microfabrication technologies and concepts in order to satisfy the requirements of new instruments. More precisely, future satellites dedicated to cosmic microwave background (CMB) studies will require the same focal plane technology to cover, at least, the frequency range of 60–600 GHz. Aluminium LEKID developed for NIKA have so far demonstrated, under real telescope conditions, a performance approaching photon noise limitation in the band 120–300 GHz. By implementing superconducting bi-layers, we recently demonstrated LEKID arrays working in the range 80–120 GHz and with sensitivities approaching the goals for CMB missions. NIKA itself (350 pixels) is followed by a more ambitious project requiring several thousand (3000–5000) pixels. NIKA2 has been installed in October 2015 at the IRAM 30-m telescope. We will describe in detail the technological improvements that allowed a relatively harmless tenfold up-scaling in pixels count without degrading the initial sensitivity. In particular, we will briefly describe a solution to simplify the difficult fabrication step linked to the slot-line propagation mode in coplanar waveguide.

Keywords

Kinetic inductance detectors Microfabrication Large array 

References

  1. 1.
    A. Monfardini, A. Benoit, A. Bideaud et al., Astrophys. J. Suppl. 194, 24 (2011). doi:10.1088/0067-0049/194/2/24 ADSCrossRefGoogle Scholar
  2. 2.
    A. Catalano, M. Calvo, N. Ponthieu et al., Astron. Astrophys. 569, A9 (2014). doi:10.1051/0004-6361/201526206 ADSCrossRefGoogle Scholar
  3. 3.
    M. Calvo, et al., in The NIKA2 Instrument, a Dual-Band Kilopixel KID Array for Millimetric Astronomy. J. Low Temp. Phys., in this Special IssueGoogle Scholar
  4. 4.
    P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, Nature 425, 817 (2003). doi:10.1038/nature02037 ADSCrossRefGoogle Scholar
  5. 5.
    J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 169 (2012). doi:10.1146/annurev-conmatphys-020911-125022 CrossRefGoogle Scholar
  6. 6.
    S. Doyle, J. Naylon, P. Mauskopf, et al., in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 7020. doi:10.1117/12.788941 (2008)
  7. 7.
    G. Coiffard, Ph.D. thesis, University of Grenoble (2015)Google Scholar
  8. 8.
    A. Adane, et al., in Cross-Coupling in a KID Array Caused by the Thickness Variation of Superconducting Metal. J. Low Temp. Phys., in this Special Issue. doi:10.1007/s10909-016-1490-3
  9. 9.
    A. Catalano, J. Goupy, H. Le Sueur et al., Astron. Astrophys. 580, A15 (2015). doi:10.1051/0004-6361/201526206 ADSCrossRefGoogle Scholar
  10. 10.
    A.D. O’Connell, M. Ansmann, R.C. Bialczak, Appl. Phys. Lett. 92(11), 112903 (2008). doi:10.1063/1.2898887 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • J. Goupy
    • 1
  • A. Adane
    • 2
  • A. Benoit
    • 1
  • O. Bourrion
    • 3
  • M. Calvo
    • 1
  • A. Catalano
    • 1
    • 3
  • G. Coiffard
    • 2
  • C. Hoarau
    • 1
  • S. Leclercq
    • 2
  • H. Le Sueur
    • 4
  • J. Macias-Perez
    • 3
  • A. Monfardini
    • 1
    • 3
  • I. Peck
    • 5
  • K. Schuster
    • 2
  1. 1.Institut Néel & Université Joseph Fourier, CNRSGrenobleFrance
  2. 2.Institut de Radio Astronomie Millimétrique (IRAM)GrenobleFrance
  3. 3.LPSC, Université Grenoble-Alpes, CNRS/IN2P3GrenobleFrance
  4. 4.Centre de Spectrométrie Nucléaire et de Spectrométrie de MasseParisFrance
  5. 5.PTA/CIME/NANOTECH/INPGGrenobleFrance

Personalised recommendations