Journal of Low Temperature Physics

, Volume 183, Issue 1–2, pp 41–49 | Cite as

Chiral Unitary Quantum Phase Transition in 2H-Fe\(_x\)TaSe\(_2\)

  • Takuya Kanno
  • Takuya Matsumoto
  • Koichi Ichimura
  • Toru Matsuura
  • Satoshi Tanda
Article

Abstract

We have observed a metal-insulator transition of a quasi-two-dimensional electronic system in transition metal dichalcogenide 2H-TaSe\(_2\) caused by doping iron. The sheet resistance of 2H-Fe\(_x\)TaSe\(_2\) (\(0 \le x \le 0.120\)) single crystals rises about \(10^6\) times with the increasing of x at the lowest temperature. We investigated the temperature dependence of the resistance and found a metal-insulator transition with a critical sheet resistance \(11.7 \pm 5.4\) k\(\mathrm {\Omega }\). The critical exponent of the localization length \(\nu \) is estimated \(0.31 \pm 0.18\). The values of the critical sheet resistance and \(\nu \) are accordant to those of the chiral unitary class (less than \(h/1.49e^2=17.3\) k\(\mathrm {\Omega }\) and \(0.35 \pm 0.03\), respectively). We suggest that 2H-Fe\(_x\)TaSe\(_2\) is classified as the chiral unitary class, not as standard unitary class.

Keywords

Conductivity of disordered solids Conductivity of transition metal compounds Quantum phase transition Anderson localization 

References

  1. 1.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958)CrossRefADSGoogle Scholar
  2. 2.
    E. Abrahams, 50 Years of Anderson Localization (World Scientific, Singapore, 2010)CrossRefMATHGoogle Scholar
  3. 3.
    G. Bergmann, Phys. Rep. 107(1), 1 (1984)CrossRefADSGoogle Scholar
  4. 4.
    F.J. Dyson, J. Math. Phys. 3, 140 (1962)CrossRefADSMathSciNetMATHGoogle Scholar
  5. 5.
    S. Hikami, A. Larkin, Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980)CrossRefADSGoogle Scholar
  6. 6.
    A.P. Schnyder, S. Ryu, A. Furusaki, A.W.W. Ludwig, Phys. Rev. B 78, 195125 (2008)CrossRefADSGoogle Scholar
  7. 7.
    S. Ryu, C. Mudry, A.W.W. Ludwig, A. Furusaki, Phys. Rev. B 85, 235115 (2012)CrossRefADSGoogle Scholar
  8. 8.
    E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979)CrossRefADSGoogle Scholar
  9. 9.
    V. Kalmeyer, S.C. Zhang, Phys. Rev. B 46, 9889 (1992)CrossRefADSGoogle Scholar
  10. 10.
    J.K. Jain, Phys. Rev. Lett 63, 199 (1989)CrossRefADSGoogle Scholar
  11. 11.
    B.I. Halperin, P.A. Lee, N. Read, Phys. Rev. B 47, 7312 (1993)CrossRefADSGoogle Scholar
  12. 12.
    L.B. Ioffe, A.I. Larkin, Phys. Rev. B 39, 8988 (1989)CrossRefADSGoogle Scholar
  13. 13.
    N. Nagaosa, P.A. Lee, Phys. Rev. Lett. 64, 2450 (1990)CrossRefADSGoogle Scholar
  14. 14.
    P.A. Lee, D.S. Fisher, Phys. Rev. Lett. 47, 882 (1981)CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    Y. Avishai, Y. Hatsugai, M. Kohmoto, Phys. Rev. B 47, 9561 (1993)CrossRefADSGoogle Scholar
  16. 16.
    K. Yakubo, Y. Goto, Phys. Rev. B 54, 13432 (1996)CrossRefADSGoogle Scholar
  17. 17.
    E. Bjerkelund, A. Kjekshus, Acta Chem. Scand. 21, 513 (1967)CrossRefGoogle Scholar
  18. 18.
    Yizhi Ge, Amy Y. Liu, Phys. Rev. B 86, 104101 (2012)CrossRefADSGoogle Scholar
  19. 19.
    A. LeBlanc, A. Nader, Solid State Commun. 150, 1346 (2010)CrossRefADSGoogle Scholar
  20. 20.
    D.A. Whitney, R.M. Fleming, R.V. Coleman, Phys. Rev. B 15, 3405 (1977)CrossRefADSGoogle Scholar
  21. 21.
    F.J. DiSalvo, R.G. Maines, J.V. Waszczak, R.E. Schwall, Solid State Commun. 14, 497 (1974)CrossRefADSGoogle Scholar
  22. 22.
    T. Kanno, T. Matsumoto, K. Ichimura, T. Matsuura, S. Tanda, Phys. B 460, 165 (2015)CrossRefADSGoogle Scholar
  23. 23.
    J.M.E. Harper, T.H. Geballe, F.J. DiSalvo, Phys. Rev. B 15, 6 (1977)Google Scholar
  24. 24.
    M. Naito, S. Tanaka, J. Phys. Soc. Jpn. 51, 219 (1982)CrossRefADSGoogle Scholar
  25. 25.
    D.-H. Lee, S. Kivelson, S.-C. Zhang, Phys. Rev. Lett. 68, 2386 (1992)CrossRefADSGoogle Scholar
  26. 26.
    M. Amado, A.V. Malyshev, A. Sedrakyan, F. Dominguez-Adame, Phys. Rev. Lett. 107, 066402 (2011)CrossRefADSGoogle Scholar
  27. 27.
    L. Schweitzer, P. Markos, Phys. Rev. Lett. 95, 256805 (2005)CrossRefADSGoogle Scholar
  28. 28.
    P. Markos, L. Schweitzer, J. Phys. A 39, 3221 (2006)CrossRefADSMathSciNetMATHGoogle Scholar
  29. 29.
    P.M. Ostrovsky, I.V. Gornyi, A.D. Mirlin, Phys. Rev. B 74, 235443 (2006)CrossRefADSGoogle Scholar
  30. 30.
    P. Markos, L. Schweitzer, Phys. Rev. B 76, 115318 (2007)CrossRefADSGoogle Scholar
  31. 31.
    S. Tanda, K. Takahashi, T. Nakayama, Phys. Rev. B 49, 9260 (1994)CrossRefADSGoogle Scholar
  32. 32.
    K. Kagawa, K. Inagaki, T. Tanda, Phys. Rev. B 53, R2979(R) (1996)CrossRefADSGoogle Scholar
  33. 33.
    J. Miller, J. Wang, Phys. Rev. Lett. 76, 1461 (1996)CrossRefADSGoogle Scholar
  34. 34.
    Y. Koike, S. Morita, T. Nakanomyo, T. Fukase, JPSJ 54, 713 (1985)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Takuya Kanno
    • 1
  • Takuya Matsumoto
    • 1
  • Koichi Ichimura
    • 1
    • 2
  • Toru Matsuura
    • 1
    • 2
  • Satoshi Tanda
    • 1
    • 2
  1. 1.Department of Applied PhysicsHokkaido UniversitySapporoJapan
  2. 2.Center of Education and Research for Topological Science and TechnologyHokkaido UniversitySapporoJapan

Personalised recommendations