Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 3–4, pp 897–903 | Cite as

Status and Prospects of the EDELWEISS-III Direct WIMP Search Experiment

  • A. JuillardEmail author
Article

Abstract

EDELWEISS-III is a direct dark matter search experiment, running 800 g heat-and-ionization cryogenic germanium detectors equipped with Full InterDigitized electrodes (FID) for the rejection of near-surface events. We report a preliminary analysis for a subset of the data (35 kg\(\cdot \)days) as well as future prospects for low-mass WIMPs seach.

Keywords

Dark matter Cryogenic detectors Germanium detectors 

Notes

Acknowledgments

The help of the technical staff of the Laboratoire Souterrain de Modane and the participant laboratories is gratefully acknowledged. The EDELWEISS project is supported in part by the German ministry of science and education (BMBF Verbundforschung ATP Proj.-Nr.05A14VKA), by the Helmholtz Alliance for Astroparticle Phyics (HAP), by the French Agence Nationale pour la Recherche, and the LabEx Lyon Institute of Origins (ANR-10-LABX-0066) of the Université de Lyon in the framework Investissements dAvenir (ANR-11-IDEX-00007), by the LabEx P2IO (ANR-10-LABX-0038) in the framework of Investissements dAvenir (ANR-11-IDEX-0003-01) both managed by the French National Research Agency (ANR), by the Science and Technology Facilities Council (UK), and by the Russian Foundation for Basic Research (Grant No. 07-02-00355-a).

References

  1. 1.
    S. Scorza for the EDELWEISS coll., LRT conference, AIP Conference Proceedings, vol. 1672 (2015). doi: 10.1063/1.4928002
  2. 2.
    B. Censier et al., EDELWEISS coll. J. Low Temp. Phys. 167, 645 (2012). doi: 10.1007/s10909-012-0568-9
  3. 3.
    B. Schmidt et al., EDELWEISS coll. Astropart. Phys. 44, 28 (2013). doi: 10.1016/j.astropartphys.2013.01.014
  4. 4.
    A. Broniatowski et al., EDELWEISS coll., Phys. Lett B. 681, 305 (2009). doi: 10.1016/j.physletb.2009.10.036
  5. 5.
    E. Armengaud et al., EDELWEISS coll., Phys. Lett B. 702, 329 (2011). doi: 10.1016/j.physletb.2011.07.034
  6. 6.
    A. Juillard for the EDELWEISS coll. J. Low Temp. Phys. 167, 1056 (2012). doi: 10.1007/s10909-012-0512-z
  7. 7.
    J. Gascon et al., EDELWEISS coll. J. Low Temp. Phys. 176, 870 (2014). doi: 10.1007/s10909-014-1096-6
  8. 8.
    S. Marnieros et al., EDELWEISS coll. J. Low Temp. Phys. 176, 182 (2014). doi: 10.1007/s10909-013-0997-0
  9. 9.
    R. Bernabei et al., Eur. Phys. J. C 67, 39 (2010). doi: 10.1140/epjc/s10052-010-1303-9
  10. 10.
    C. Savage, G. Gelmini, P. Gondolo, K. Freese, J. Cosmol. Astropart. P 0904, 010 (2009). doi: 10.1088/1475-7516/2009/04/010
  11. 11.
    C.E. Aalseth et al., Phys. Rev. D 88, 012002 (2013). doi: 10.1103/PhysRevD.88.012002
  12. 12.
    G. Angloher et al., Eur. Phys. J. C 72, 1971 (2012). doi: 10.1140/epjc/s10052-012-1971-8
  13. 13.
    R. Agnese et al., Phys. Rev. Lett. 111, 251301 (2013). doi: 10.1103/PhysRevLett.111.251301
  14. 14.
    D. Hooper, T.R. Slatyer, (2013). arXiv:1302.6589 [astro-ph.HE]
  15. 15.
    Th. Main de la Boissière, PhD Thesis Université Paris Sud, July 3rd 2015, to be published in https://tel.archives-ouvertes.fr
  16. 16.
    Th. Main de la Boissière for the EDELWEISS coll. arXiv:1504.00820v1
  17. 17.
    S. Scorza for the EDELWEISS coll. Proceeding of the TAUP 2015 XIV International Conference on Topics in Astroparticle and Underground Physics Google Scholar
  18. 18.
    Q. Dong, Y.X. Liang, D. Ferry, A. Cavanna, U. Gennser, L. Couraud, Y. Jin, Appl. Phys. Lett. 105, 013504 (2014). doi: 10.1063/1.4887368 ADSCrossRefGoogle Scholar
  19. 19.
    Xavier de la Broise et al., Nucl. Instrum. Methods A 787, 64 (2015). doi: 10.1016/j.nima.2014.11.016 ADSCrossRefGoogle Scholar
  20. 20.
    A. Phipps, J. Low Temp. Phys. This Special Issue. doi: 10.1007/s10909-016-1475-2
  21. 21.
    J. Billard et al., J. Low Temp. Phys. This Special Issue. doi: 10.1007/s10909-016-1500-5
  22. 22.
    P.N. Luke, J. Appl. Phys. 64, 6858 (1988). doi: 10.1063/1.341976
  23. 23.
    B . Neganov, V. Trofimov, USSR Patent No 1037771, Otkryt. Izobret. 146, 215 (1985)Google Scholar
  24. 24.
    Q. Arnaud et al., EDELWEISS coll., J. Low Temp. Phys. This Special Issue. doi: 10.1007/s10909-015-1463-y
  25. 25.
    E. Armengaud et al., Phys. Rev. D 86, 051701 (2012). doi: 10.1103/PhysRevD.86.051701
  26. 26.
    J. Billard et al., Phys. Rev. D 89, 023524 (2014). doi: 10.1103/PhysRevD.89.023524
  27. 27.
    EURECA Conceptual Design Report, The EURECA collaboration. Phys. Dark Universe 3, 41–74 (2014). doi: 10.1016/j.dark.2014.03.004

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.CNRS/IN2P3, Institut de Physique Nucléaire de LyonUniversité de LyonVilleurbanneFrance

Personalised recommendations