Skip to main content

Analysis of Electronic and Structural Properties of Surfaces and Interfaces Based on LaAlO\( _{3} \) and SrTiO\( _{3}\)


Recently, it was established that a two-dimensional electron system can arise at the interface between two oxide insulators LaAlO\(_{3}\) and SrTiO\(_{3}\). This paradigmatic example exhibits metallic behaviors and magnetic properties between non-magnetic and insulating oxides. Despite a huge amount of theoretical and experimental work a thorough understanding is yet to be achieved. We analyzed the structural deformations of a LaAlO\( _{3} \) (001) slab induced by hydrogen adatoms and oxygen vacancies at its surface by means of density functional theory. Moreover, we investigated the influence of surface reconstruction on the density of states and determined the change of the local density of states at the Fermi level with increasing distance from the surface for bare LaAlO\( _{3} \) and for a conducting LaAlO\(_{3}\)/SrTiO\(_{3}\) interface. In addition, the Al-atom displacements and distortions of the TiO\(_6\)-octahedra were estimated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. J.G. Bednorz, K.A. Müller, Z. Phys. B 64, 189 (1986)

    ADS  Article  Google Scholar 

  2. A. Ohtomo, H. Hwang, Nature 427, 423 (2004)

    ADS  Article  Google Scholar 

  3. N. Reyren, S. Thiel, A.D. Caviglia, L.F. Kourkoutis, G. Hammerl, C. Richter, C.W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D.A. Muller, J.-M. Triscone, J. Mannhart, Science 317, 1196 (2007)

    ADS  Article  Google Scholar 

  4. S. Thiel, G. Hammerl, A. Schmehl, C. Schneider, J. Mannhart, Science 313, 1942 (2006)

    ADS  Article  Google Scholar 

  5. Y. Yu, A. Zunger, Nat. Commun. 5, 5118 (2014)

    ADS  Article  Google Scholar 

  6. A. Brinkman, M. Huijben, M. Van Zalk, J. Huijben, U. Zeitler, J. Maan, W. Van der Wiel, G. Rijnders, D. Blank, H. Hilgenkamp, Nat. Mater. 6, 493 (2007)

    ADS  Article  Google Scholar 

  7. L. Li, C. Richter, J. Mannhart, R. Ashoori, Nat. Phys. 7, 762 (2011)

    Article  Google Scholar 

  8. Ariando, X. Wang, G. Baskaran, Z.Q. Liu, J. Huijben, J.B. Yi, A. Annadi, A.R. Barman, A. Rusydi, S. Dhar, Y.P. Feng, J. Ding, H. Hilgenkamp, T. Venkatesan, Nat. Commun. 2, 188 (2011)

    ADS  Article  Google Scholar 

  9. B. Kalisky, J.A. Bert, B.B. Klopfer, C. Bell, H.K. Sato, M. Hosoda, Y. Hikita, H.Y. Hwang, K.A. Moler, Nat. Commun. 3, 922 (2012)

    ADS  Article  Google Scholar 

  10. N. Pavlenko, T. Kopp, E. Tsymbal, J. Mannhart, G. Sawatzky, Phys. Rev. B 86, 064431 (2012)

    ADS  Article  Google Scholar 

  11. N. Pavlenko, T. Kopp, J. Mannhart, Phys. Rev. B 88, 201104 (2013)

    ADS  Article  Google Scholar 

  12. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    ADS  MathSciNet  Article  Google Scholar 

  13. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Article  Google Scholar 

  14. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 169 (1996)

    Article  Google Scholar 

  15. MedeA\(^{\textregistered }\)-2.17, Materials Design Inc, Angel Fire, NM, USA, 2015

  16. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    ADS  Article  Google Scholar 

  17. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    ADS  Article  Google Scholar 

  18. K. Krishnaswamy, C. Dreyer, A. Janotti, C. Van de Walle, Phys. Rev. B 90, 235436 (2014)

    ADS  Article  Google Scholar 

  19. A. Janotti, L. Bjaalie, L. Gordon, C. Van de Walle, Phys. Rev. B 86, 241108 (2012)

    ADS  Article  Google Scholar 

  20. Y. Xie, Y. Hikita, C. Bell, H.Y. Hwang, Nat. Commun. 2, 494 (2011)

    ADS  Article  Google Scholar 

  21. J. Yao, P. Merrill, S. Perry, D. Marton, J. Rabalais, J. Chem. Phys. 108, 1645 (1998)

    ADS  Article  Google Scholar 

  22. A. Kalabukhov, R. Gunnarsson, J. Börjesson, E. Olsson, T. Claeson, D. Winkler, Phys. Rev. B 75, 121404 (2007)

    ADS  Article  Google Scholar 

  23. V. Vonk, J. Huijben, D. Kukuruznyak, A. Stierle, H. Hilgenkamp, A. Brinkman, S. Harkema, Phys. Rev. B 85, 045401 (2012)

    ADS  Article  Google Scholar 

  24. Y. Li, S.N. Phattalung, S. Limpijumnong, J. Kim, J. Yu, Phys. Rev. B 84, 245307 (2011)

    ADS  Article  Google Scholar 

  25. L. Zhang, X.F. Zhou, H.T. Wang, J.J. Xu, J. Li, E. Wang, S.H. Wei, Phys. Rev. B 82, 125412 (2010)

    ADS  Article  Google Scholar 

  26. F. Cossu, U. Schwingenschlögl, V. Eyert, Phys. Rev. B 88, 045119 (2013)

    ADS  Article  Google Scholar 

  27. R. Pentcheva, W.E. Pickett, Phys. Rev. B 74, 035112 (2006)

    ADS  Article  Google Scholar 

  28. I.B. Bersuker, The Jahn–Teller Effect (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

Download references


The reported study was supported by the Supercomputing Center of Lomonosov Moscow State University with support of the Russian Government Program of Competitive Growth of Kazan Federal University and of the DFG Sonderforschungsbereich TRR 80. The work of A.G. Kiiamov was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities. The authors acknowledge helpful discussion with D. Juraschek, A. Petrova, Kate Reidy and Jessica Weitbretch.

Author information

Authors and Affiliations


Corresponding author

Correspondence to I. I. Piyanzina.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piyanzina, I.I., Lysogorskiy, Y.V., Varlamova, I.I. et al. Analysis of Electronic and Structural Properties of Surfaces and Interfaces Based on LaAlO\( _{3} \) and SrTiO\( _{3}\) . J Low Temp Phys 185, 597–602 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Surface
  • Interface
  • Defects
  • Density functional
  • Electronic structure