Skip to main content
Log in

Variable-Range Hopping Conductivity in Quantum Hall Regime for HgTe-Based Heterostructure

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have measured the longitudinal and Hall resistivities in the quantum Hall regime at magnetic fields B up to 9 T and temperatures \(T =(2.9\div 50)\) K for the HgCdTe/HgTe/HgCdTe heterostructure with a wide HgTe quantum well. The temperature-induced transport at the resistivity minima corresponding to the quantum Hall plateaus has been studied within the concept of hopping conduction in a strongly localized electron system. An analysis of the variable-range hopping conductivity in the regions of the first and second quantum Hall plateaus provided an opportunity to determine the value and the magnetic-field dependence of the localization length with the experimental estimation of the critical indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. B.I. Shklovskii, A.L. Efros, Electronic Properties of Doped Semiconductors (Springer, Heidelberg, 1984)

    Book  Google Scholar 

  2. N.F. Mott, J. Non-Crystal, Solids 1, 1 (1968)

    Google Scholar 

  3. A.L. Efros, B.I. Shklovskii, J. Phys. C 8, L49 (1975)

    Article  ADS  Google Scholar 

  4. D.G. Polyakov, B.I. Shklovskii, Phys. Rev. Lett. 70, 3796 (1993)

    Article  ADS  Google Scholar 

  5. D.G. Polyakov, B.I. Shklovskii, Phys. Rev. B 48, 11167 (1993)

    Article  ADS  Google Scholar 

  6. I.L. Aleiner, B.I. Shklovskii, Phys. Rev. B 49, 13721 (1994)

    Article  ADS  Google Scholar 

  7. R.E. Prange, S.M. Girvin (eds.), The quantum Hall effect, Graduate Texts in Contemporary Physics (Springer, Berlin, 1987)

    Google Scholar 

  8. B. Kramer, T. Ohtsuki, S. Kettemann, Phys. Rep. 417, 211 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. B. Huckestein, Rev. Mod. Phys. 67, 367 (1995)

    Article  ADS  Google Scholar 

  10. D.-H. Shin, C.E. Becker, J.J. Harris, J.M. Fernandez, N.J. Woods, T.J. Thornton, D.K. Maude, J.-C. Portal, Semicond. Sci. Technol. 14, 762 (1999)

    Article  ADS  Google Scholar 

  11. M. Furlan, Phys. Rev. B 57, 14818 (1998)

    Article  ADS  Google Scholar 

  12. F. Hohls, U. Zeitler, R.J. Haug, Phys. Rev. Lett. 88, 036802 (2002)

    Article  ADS  Google Scholar 

  13. T. Tao, Y.-J. Zhao, G.-P. Guo, X.-J. Hao, Guang-Can Guo. Phys. Lett. A 368, 108 (2007)

    Article  ADS  Google Scholar 

  14. T. Tao, Y.-J. Zhao, X.-J. Hao, C.-Y. Wang, Guo G-C, G.-P. Guo. Phys. Lett. A 25, 1083 (2008)

    Google Scholar 

  15. N.A. Dodoo-Amoo, K. Saeed, D. Mistry, S.P. Khanna, L. Li, E.N. Linfield, A.G. Davies, J.E. Cunningham, J. Phys. 26, 475801 (2014)

    Google Scholar 

  16. S. Koch, R.J. Haugt, K. von Klitzing, K. Ploogj, Semicond. Sci. Technol. 10, 209 (1995)

    Article  ADS  Google Scholar 

  17. A.J.M. Giesbers, U. Zeitler, L.A. Ponomarenko, R. Yang, K.S. Novoselov, A.K. Geim, J.C. Maan, Phys. Rev. 80, 241411 (2009)

    Article  Google Scholar 

  18. K. Bennaceur, P. Jacques, F. Portier, P. Roche, D.C. Glattli, Phys. Rev. B 86, 085433 (2012)

    Article  ADS  Google Scholar 

  19. M. Konig, S. Wiedmann, C. Brne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, S.-C. Zhang, Science 318, 766 (2007)

    Article  ADS  Google Scholar 

  20. E.B. Olshanetsky, S. Sassine, Z.D. Kvon, N.N. Mikhailov, S.A. Dvoretsky, J.C. Portal, A.L. Aseev, JETP Lett. 84, 565 (2006)

    Article  ADS  Google Scholar 

  21. Z.D. Kvon, E.B. Olshanetsky, N.N. Mikhailov, D.A. Kozlov, Low Temp. Phys. 35, 6 (2009)

    Article  ADS  Google Scholar 

  22. Yu.G. Arapov, S.V. Gudina, V.N. Neverov, S. M. Podgornykh, M.R. Popov, G.I. Harus, N.G. Shelushinina, M.V. Yakunin, N.N. Mikhailov, S.A. Dvoretsky, Semiconductors 49 (2015) (in print)

  23. M. Konig, H. Buhmann, L.W. Molenkamp, T. Hughes, C.-X. Liu, X.-L. Qi, S.-C. Zhang, J. Phys. Soc. Jpn. 77, 031007 (2008)

    Article  ADS  Google Scholar 

  24. M.I. D’yakonov, A.V. Khaetskii, Zh. Eksp. Teor. Fiz. 82, 1584 (1982)

  25. L.G. Gerchikov, A. Subashiev, Phys. Status Solidi B 160, 443 (1990)

    Article  ADS  Google Scholar 

  26. M.V. Yakunin, S.M. Podgornykh, N.N. Mikhailov, S.A. Dvoretsky, Physica E 42, 948 (2010)

    Article  ADS  Google Scholar 

  27. S.A. Trugman, Phys. Rev. B 27, 7539 (1983)

    Article  ADS  Google Scholar 

  28. J.T. Chalker, P.D. Coddington, J. Phys. C 21, 2665 (1988)

    Article  ADS  Google Scholar 

  29. H. Aoki, T. Ando, Phys. Rev. Lett. 54, 831 (1985)

    Article  ADS  Google Scholar 

  30. S. Hikami, Prog. Theor. Phys. 76, 1210 (1986)

    Article  ADS  Google Scholar 

  31. A.M.M. Pruisken, B. Skoric, M.A. Baranov, Phys. Rev. B 60, 16838 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was carried out as part of the government task “Spin” No. 01201463330 with partial support from the Russian Foundation for Basic Research (RFBR) Grant No. 14-02-00151. The measurements were done in the Testing center of nanotechnology and advanced materials of M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gudina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arapov, Y.G., Gudina, S.V., Neverov, V.N. et al. Variable-Range Hopping Conductivity in Quantum Hall Regime for HgTe-Based Heterostructure. J Low Temp Phys 185, 665–672 (2016). https://doi.org/10.1007/s10909-016-1477-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1477-0

Keywords

Navigation