Skip to main content
Log in

Adsorption of Helium Atoms on Two-Dimensional Substrates

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The study of the adsorption phenomenon of helium began many decades ago with the discovery of graphite as a homogeneous substrate for the investigation of physically adsorbed monolayer films. In particular, helium monoatomic layers on graphite were found to exhibit a very rich phase diagram. In the present work we have investigated the adsorption phenomenon of helium atoms on graphene and silicene substrates by means of density functional theory with Born–Oppenheimer approximation. Helium–substrate and helium–helium interactions were considered from first principles. Vibrational properties of adsorbed monolayers have been used to explore the stability of the system. This approach reproduces results describing the stability of a helium monolayer on graphene calculated by quantum Monte Carlo (QMC) simulations for low and high coverage cases. However, for the moderate coverage value there is a discrepancy with QMC results due to the lack of helium zero point motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Schick, J. Dash, J. Ruvalds, Phase Transitions in Surface Films (Plenum Press, New York, 1980)

    Google Scholar 

  2. K. Yamamoto, Y. Shibayama, K. Shirahama, Phys. Rev. Lett. 100(19), 195301 (2008)

    Article  ADS  Google Scholar 

  3. M. Nava, D. Galli, M. Cole, L. Reatto, Phys. Rev. B 86(17), 174509 (2012)

    Article  ADS  Google Scholar 

  4. F. Manchester, Rev. Mod. Phys. 39(2), 383 (1967)

    Article  ADS  Google Scholar 

  5. M. Bretz, G.B. Huff, J. Dash, Phys. Rev. Lett. 28(12), 729 (1972)

    Article  ADS  Google Scholar 

  6. M. Pierce, E. Manousakis, Phys. Rev. B 59(5), 3802 (1999)

    Article  ADS  Google Scholar 

  7. M. Gordillo, D. Ceperley, Phys. Rev. B 58(10), 6447 (1998)

    Article  ADS  Google Scholar 

  8. M. Gordillo, J. Boronat, Phys. Rev. Lett. 102(8), 085303 (2009)

    Article  ADS  Google Scholar 

  9. Y. Kwon, D.M. Ceperley, Phys. Rev. B 85(22), 224501 (2012)

    Article  ADS  Google Scholar 

  10. P. Hohenberg, W. Kohn, Phys. Rev. A 136(3B), B864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  11. W. Kohn, L.J. Sham, Phys. Rev. A 140(4A), A1133 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  12. G.G. Guzmán-Verri, L.L.Y. Voon, Phys. Rev. B 76(7), 075131 (2007)

    Article  ADS  Google Scholar 

  13. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Appl. Phys. Lett. 97(22), 223109 (2010)

    Article  ADS  Google Scholar 

  14. D. Timerkaeva, V. Stutzmann, B. Minisini, D. Tayurskii, J. Phys. 324, 012040 (2011)

    Google Scholar 

  15. C. Debras, D. Tayurskii, B. Minisini, Y. Lysogorskiy, J. Phys. 324, 012029 (2011)

    Google Scholar 

  16. Y.V. Lysogorskiy, D.A. Tayurskii, JETP Lett. 98(4), 209 (2013)

    Article  ADS  Google Scholar 

  17. M.W. Cole, D. Frankl, D.L. Goodstein, Rev. Mod. Phys. 53(2), 199 (1981)

    Article  ADS  Google Scholar 

  18. P.E. Blochl, Phys. Rev. B 50(24), 17953 (1994)

    Article  ADS  Google Scholar 

  19. G. Kresse, D. Joubert, Phys. Rev. B 59(3), 1758 (1999)

    Article  ADS  Google Scholar 

  20. G. Kresse, J. Furthmüller, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  21. MedeA \(\textregistered \) version 2.16. MedeA \(\textregistered \) is a registered trademark of Materials Design, Inc., Angel Fire, New Mexico

  22. M. Methfessel, A. Paxton, Phys. Rev. B 40(6), 3616 (1989)

    Article  ADS  Google Scholar 

  23. W.E. Carlos, M.W. Cole, Surf. Sci. 91, 339 (1980)

    Article  ADS  Google Scholar 

  24. W.E. Carlos, M.W. Cole, Phys. Rev. B 21(4), 1636 (1980)

    Article  ADS  Google Scholar 

  25. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  26. B.H. Hammer, L. Bruno, J.K. Nørskov, Phys. Rev. B 59(11), 7413 (1999)

    Article  ADS  Google Scholar 

  27. A.D. Becke, Phys. Rev. A 38(6), 3098 (1988)

    Article  ADS  Google Scholar 

  28. S. Grimme, J. Comput. Chem. 27(15), 1787 (2006)

    Article  Google Scholar 

  29. A. Tkatchenko, M. Scheffler, Phys. Rev. Lett. 102(7), 073005 (2009)

    Article  ADS  Google Scholar 

  30. J. Klimes, D.R. Bowler, A. Michaelides, J. Phys. 22(2), 022201 (2010)

    Google Scholar 

  31. M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92(24), 246401 (2004)

    Article  ADS  Google Scholar 

  32. K. Parlinski, Z. Li, Y. Kawazoe, Phys. Rev. Lett. 78(21), 4063 (1997)

    Article  ADS  Google Scholar 

  33. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108(15), 155501 (2012)

    Article  ADS  Google Scholar 

  34. J. Happacher, P. Corboz, M. Boninsegni, L. Pollet, Phys. Rev. B 87(9), 094514 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Kate Reidy and Jessica Weitbretch for help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Burganova.

Additional information

The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burganova, R., Lysogorskiy, Y., Nedopekin, O. et al. Adsorption of Helium Atoms on Two-Dimensional Substrates. J Low Temp Phys 185, 392–398 (2016). https://doi.org/10.1007/s10909-016-1473-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1473-4

Keywords

Navigation