Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 1–2, pp 330–335 | Cite as

Voltage-Assisted Calorimetric Detection of Gamma Interactions in a Prototype Cryogenic Ge Detector of the EDELWEISS Collaboration for Dark Matter Search

  • A. BroniatowskiEmail author
  • M.-C. Piro
  • S. Marnieros
  • L. Bergé
  • L. Dumoulin
  • M. Chapellier
Article

Abstract

As a part of an R&D program to improve the sensitivity of its detectors to low-mass (\(<\)10 GeV) weakly interacting massive particles, the Edelweiss dark matter collaboration is developing cryogenic ionization-and-heat coplanar grid germanium detectors, operated in a high-bias mode where advantage is taken of the voltage-assisted amplification of the ionization signals for enhanced sensitivity to low-energy (\(<\)a few keV) interactions. First results of \(\upgamma \) calibration experiments are presented for a 200 g prototype detector, capable of sustaining collection voltages up to 180 V with a corresponding gain of 60 in the heat measurement channel for electron recoil interactions. Event populations are analyzed based on ionization and heat data and on computer modeling of the detector signals, and a tentative interpretation of the results for the heat resolution is presented, involving athermal ballistic phonon losses in the device with consequent fluctuations in the thermometer response to the energy deposit of a particle.

Keywords

Dark matter Germanium cryogenic detector Neganov–Luke effect 

Notes

Acknowledgments

This work has been funded in part by the P2IO LabEx (ANR-10-LABX-0038) in the framework \(\ll \) Investissements d’Avenir \(\gg \) (ANR-11-IDEX-0003-01) managed by the French National Research Agency (ANR). A.B. acknowledges the support by the DFG Excellence Initiative through the Karlsruhe School of Elementary Particle and Astroparticle Physics: Science and Technology (KSETA) as KSETA guest scientist.

References

  1. 1.
    P.N. Luke, J. Appl. Phys. 64, 6858–6860 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    S. Marnieros et al., J. Low Temp. Phys. 176, 182–187 (2014). doi: 10.1007/s10909-013-0997-0 ADSCrossRefGoogle Scholar
  3. 3.
    A. Broniatowski et al., Phys. Lett. B 681, 305–309 (2009). doi: 10.1016/j.physletb.2009.10.036 ADSCrossRefGoogle Scholar
  4. 4.
    E. Olivieri et al., in Proceedings of 13th International Workshop on Low Temperature Detectors, Stanford, 2009. AIP Conference Proceedings , vol. 1185, p. 310 (2009)Google Scholar
  5. 5.
    A. Broniatowski, J. Low Temp. Phys. 176, 860–869 (2014). doi: 10.1007/s10909-014-1091-y ADSCrossRefGoogle Scholar
  6. 6.
    J.P. Wolfe, Imaging Phonons (Cambridge University Press 1998) ISBN: 13 978-0-521-62061-1 and references thereinGoogle Scholar
  7. 7.
    J.E. Graebner et al., Phys. Rev. B 29, 3744–3746 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    W.A. Phillips, Rep. Prog. Phys. 50, 1657–1708 (1987)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. Broniatowski
    • 1
    • 2
    Email author
  • M.-C. Piro
    • 1
  • S. Marnieros
    • 1
  • L. Bergé
    • 1
  • L. Dumoulin
    • 1
  • M. Chapellier
    • 1
  1. 1.CSNSM/IN2P3/CNRS and Université Paris-SudOrsayFrance
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations