Skip to main content
Log in

Anisotropic Quantum Hall Liquid States with No Translational Invariance in the Lowest Landau Level

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Strongly correlated two-dimensional electron systems in a high perpendicular magnetic field have displayed remarkable new physics leading to the discovery of phenomena such as the integer and the fractional quantum Hall effect, to mention a few. Laughlin’s theoretical model and the composite fermion’s (CFs) approach provide a good description of the liquid electronic phases in the lowest Landau level (LLL) at relatively large filling factors. Other electronic phases at smaller filling factors of the LLL likely represent electronic Wigner solid states. It is believed that no other phases with intermediate order stabilize at the liquid–solid transition region. The current study deals with filling factor 1/6 in the LLL, a state which is very close to the critical filling factor where the liquid–solid transition takes place. With the assumption that the underlying signs of crystalline order are starting to appear at this transitional regime, we focus our attention and study the properties of a hybrid electronic phase that lacks translational invariance. To describe such a state, we consider a wave function that lies entirely in the LLL but, unlike a typical quantum Hall liquid phase, does not possess translational invariance. Although inspired by Laughlin’s approach, the wave function we introduce differs from Laughlin’s or CFs wave functions that describe translationally invariant uniform electronic phases. We perform quantum Monte Carlo simulations in a standard disk geometry to gain a better understanding of the properties of this wave function that may be considered as a precursor to the more conventional Wigner crystal phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. D.C. Tsui, H.L. Stormer, A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982)

    Article  ADS  Google Scholar 

  2. R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)

    Article  ADS  Google Scholar 

  3. J.K. Jain, Phys. Rev. Lett. 63, 199 (1989)

    Article  ADS  Google Scholar 

  4. O. Ciftja, Physica E 9, 226 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  5. O. Ciftja, Eur. Phys. J. B 13, 671 (2000)

    Article  ADS  Google Scholar 

  6. B.I. Halperin, P.A. Lee, N. Read, Phys. Rev. B 47, 7312 (1993)

    Article  ADS  Google Scholar 

  7. P.K. Lam, S.M. Girvin, Phys. Rev. B 30, R473 (1984)

    Article  ADS  Google Scholar 

  8. K. Yang, F.D.M. Haldane, E.H. Rezayi, Phys. Rev. B 64, 081301(R) (2001)

    Article  ADS  Google Scholar 

  9. E. Rezayi, N. Read, Phys. Rev. Lett. 72, 900 (1994)

    Article  ADS  Google Scholar 

  10. O. Ciftja, Europhys. Lett. 74, 486 (2006)

    Article  ADS  Google Scholar 

  11. D. Yoshioka, B.I. Halperin, P.A. Lee, Phys. Rev. Lett. 50, 1219 (1983)

    Article  ADS  Google Scholar 

  12. R.B. Laughlin, Phys. Rev. B 27, 3383 (1983)

    Article  ADS  Google Scholar 

  13. F.D.M. Haldane, Phys. Rev. Lett. 51, 605 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  14. R.B. Laughlin, Phys. Rev. B 23, 5632 (1981)

    Article  ADS  Google Scholar 

  15. O. Ciftja, Int. J. Mod. Phys. B 26, 1244001 (2012)

    Article  ADS  Google Scholar 

  16. R. Morf, B.I. Halperin, Phys. Rev. B 33, 2221 (1986)

    Article  ADS  Google Scholar 

  17. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.M. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  18. O. Ciftja, C. Wexler, Phys. Rev. B 67, 075304 (2003)

    Article  ADS  Google Scholar 

  19. A.C. Archer, K. Park, J.K. Jain, Phys. Rev. Lett. 111, 146804 (2013)

    Article  ADS  Google Scholar 

  20. V. Oganesyan, S.A. Kivelson, E. Fradkin, Phys. Rev. B 64, 195109 (2001)

    Article  ADS  Google Scholar 

  21. C. Wexler, O. Ciftja, Int. J. Mod. Phys. B 20, 747 (2006)

    Article  ADS  Google Scholar 

  22. Q.M. Doan, E. Manousakis, Phys. Rev. B 75, 195433 (2007)

    Article  ADS  Google Scholar 

  23. O. Ciftja, C. Wexler, Physica B 403, 1511 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by US Army Research Office (ARO) Grant No. W911NF-13-1-0139 and National Science Foundation (NSF) Grants No. DMR-1104795 and DMR-1410350.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orion Ciftja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciftja, O. Anisotropic Quantum Hall Liquid States with No Translational Invariance in the Lowest Landau Level. J Low Temp Phys 183, 85–91 (2016). https://doi.org/10.1007/s10909-015-1468-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1468-6

Keywords

Navigation