Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 1–2, pp 308–315 | Cite as

Optimizing Cryogenic Detectors for Low-Mass WIMP Searches

  • Q. ArnaudEmail author
  • J. Billard
  • A. Juillard
  • The EDELWEISS Collaboration
Article

Abstract

This paper describes the methodology and results from a study dedicated to the optimization of cryogenic detectors for low-mass WIMP searches. Considering a data-driven background model from the EDELWEISS-III experiment, and two analysis methods, namely profile likelihood and boosted decision tree, we indentify the main experimental constraints and performances that have to be improved. We found that there is a clear difference in how to optimize the detector setup whether focusing on WIMPs with masses below 5 GeV or above. Finally, in the case of a hundred-kg scale experiment, we discuss the requirements to probe most of the parameter space region delimited by the ultimate neutrino bound below 6 GeV.

Keywords

Dark Matter Profile likelihood BDT Projections Low-mass 

Notes

Acknowledgments

The help of the technical staff of the Laboratoire Souterrain de Modane and the participant laboratories is gratefully acknowledged. The EDELWEISS project is supported in part by the German ministry of science and education (BMBF Verbundforschung ATP Proj.-Nr.05A14VKA), by the Helmholtz Alliance for Astroparticle Phyics (HAP), by the French Agence Nationale pour la Recherche and the Labex Lyon Institute of Origins (ANR-10-LABX-0066) of the Université de Lyon within the program Investissement d’Avenir (ANR-11-IDEX-00007), by Science and Technology Facilities Council (UK) and the Russian Foundation for Basic Research (Grant No. 07-02-00355-a).

References

  1. 1.
    A. Broniatowski et al. [EDELWEISS], Phys. Lett. B. 681, 305–309 (2009)Google Scholar
  2. 2.
    G. Angloher et al. [CRESST], Eur. Phys. J. C. 74, 3184 (2014)Google Scholar
  3. 3.
    R. Agnese et al. [SuperCDMS], Phys. Rev. Lett. 112, 241302 (2014)Google Scholar
  4. 4.
    E. Armengaud et al. [EDELWEISS], Phys. Rev. D 86, 051701 (2012)Google Scholar
  5. 5.
    Q. Arnaud, “Détection directe de matière noire avec l’expérience EDELWEISS-III”, Ph.D. thesis, Université Claude Bernard Lyon-I (2015)Google Scholar
  6. 6.
    A. Juillard for the EDELWEISS Coll., J. Low Temp. Phys., in this Special Issue. doi: 10.1007/s10909-016-1493-0
  7. 7.
    J.N. Bahcall, Phys. Rev. 132, 362–367 (1963)ADSCrossRefGoogle Scholar
  8. 8.
    E Browne, R.B Firestone, in Table of Radioactive Isotopes, ed. by V.S. Shirley (1986). doi: 10.1002/bbpc.19870910459
  9. 9.
    F. Ruppin et al., Phys. Rev. D 90, 083510 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    P.N. Luke, J. Appl. Phys. 64, 6858 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    G. Cowan et al., Eur. Phys. J. C 71, 1554 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Q. Dong et al., Appl. Phys. Lett. 105, 013504 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Xavier de la Broise et al., Nucl. Instrum. Methods A 787, 64 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    J. Billard et al., J. Low Temp. Phys., in this Special Issue. doi: 10.1007/s10909-016-1500-5

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Q. Arnaud
    • 1
    Email author
  • J. Billard
    • 1
  • A. Juillard
    • 1
  • The EDELWEISS Collaboration
  1. 1.CNRS/IN2P3, Institut de Physique Nucléaire de LyonUniversité de LyonVilleurbanneFrance

Personalised recommendations