Skip to main content
Log in

Advantages of Photon Counting Detectors for Terahertz Astronomy

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

For astronomical observation at terahertz frequencies, a variety of cryogenic detector technologies are being developed to achieve background-limited observation from space, where a noise equivalent power (NEP) of less than \(10^{-18}\) W/Hz\(^{0.5}\) is often required. When each photon signal is resolved in time, the requirements on NEP are reduced and 1 ns time resolution corresponds to an NEP of approximately \(10^{-17}\) W/Hz\(^{0.5}\) at THz frequencies. Furthermore, fast photon counting detectors have a high dynamic range to observe bright terahertz sources such as stars and active galactic nuclei. Applications of photon counting detector are discussed for cosmic microwave background and photon counting terahertz interferometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. B. Swinyard, T. Nakagawa, Exp. Astron. 23, 193 (2009). doi:10.1007/s10686-008-9090-0

    Article  ADS  Google Scholar 

  2. W. Wild, N.S. Kardashev, Exp. Astron. 23, 221 (2009). doi:10.1007/s10686-008-9097-6

    Article  ADS  Google Scholar 

  3. P.F. Goldsmith et al., Proc. SPIE 7010, 701020 (2008). doi:10.1117/12.788412

    Article  Google Scholar 

  4. D. Leisawitz et al., Adv. Space Res. 40, 689 (2007). doi:10.1016/j.asr.2007.05.081

    Article  ADS  Google Scholar 

  5. F. Helmich, R.J. Ivison, Exp. Astron. 23, 245 (2009). doi:10.1007/s10686-008-9100-2

    Article  ADS  Google Scholar 

  6. M.G. Hauser et al., Astrophys. J. 508, 25 (1998). doi:10.1086/306379

    Article  ADS  Google Scholar 

  7. S. Ariyoshi et al., IEEE Trans. Appl. Supercond. 15–2, 920 (2005). doi:10.1109/TASC.2005.850119

    Article  Google Scholar 

  8. H. Ezawa, H. Matsuo, M. Ukibe, G. Fujii, S. Shiki, J. Low Temp. Phys. This Special Issue (2016)

  9. S. Komiyama, IEEE J. Select. Top. Quantum Electron. 17, 54 (2011). doi:10.1109/JSTQE.2010.2048893

  10. B.S. Karasik, A.V. Sergeev, D.E. Prober, IEEE Trans. Terahertz Sci. Technol. 1, 97 (2011). doi:10.1109/TTHZ.2011.2159560

  11. H. Matsuo, J. Low Temp. Phys. 167, 840 (2012). doi:10.1007/s10909-012-0579-6

    Article  ADS  Google Scholar 

  12. P. De Bernardis, S. Masi, Phys. Lett. B 118, 333 (1982). doi:10.1016/0370-2693(82)90197-6

    Article  ADS  Google Scholar 

  13. M. Giovannini, Phys. Rev. D 83, 023515 (2011). doi:10.1103/PhysRevD.83.023515

    Article  ADS  Google Scholar 

  14. R. Hanbury Brown, R.Q. Twiss, Nature 177, 27 (1956). doi:10.1038/177027a0

    Article  ADS  Google Scholar 

  15. H. Ezawa et al., Proc. ISSTT-2015, W2–2 (2015)

Download references

Acknowledgments

This research is financially supported by Matsuo Foundation, ISAS/JAXA, and Grant-in-Aid for Exploratory Research of JSPS KAKENHI Grant Number 15K13469.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Matsuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuo, H., Ezawa, H. Advantages of Photon Counting Detectors for Terahertz Astronomy. J Low Temp Phys 184, 718–723 (2016). https://doi.org/10.1007/s10909-015-1462-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1462-z

Keywords

Navigation