Advertisement

Journal of Low Temperature Physics

, Volume 184, Issue 3–4, pp 780–785 | Cite as

CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer

  • A. TartariEmail author
  • E. S. Battistelli
  • M. Piat
  • D. Prêle
Article

Abstract

Cosmic microwave background (CMB) spectral science is experiencing a renewed interest after the impressive result of COBE–FIRAS in the early Nineties. In 2011, the PIXIE proposal contributed to reopen the prospect of measuring deviations from a perfect 2.725 K planckian spectrum. Both COBE–FIRAS and PIXIE are differential Fourier transform spectrometers (FTSes) capable to operate in the null condition across \(\sim \)2 frequency decades (in the case of PIXIE, the frequency span is 30 GHz–6 THz). We discuss a complementary strategy to observe CMB spectral distortions at frequencies lower than 250 GHz, down to the Rayleigh–Jeans tail of the spectrum. The throughput advantage that makes the FTS capable of achieving exquisite sensitivity via multimode operation becomes limited at lower frequencies. We demonstrate that an array of 100 cryogenic planar filter-bank spectrometers coupled to single mode antennas, on a purely statistical ground, can perform better than an FTS between tens of GHz and 200 GHz (a relevant frequency window for cosmology) in the hypothesis that (1) both instruments have the same frequency resolution and (2) both instruments are operated at the photon noise limit (with the FTS frequency band extending from \(\sim \)tens of GHz up to 1 THz). We discuss possible limitations of these hypotheses, and the constraints that have to be fulfilled (mainly in terms of efficiency) in order to operate a cryogenic filter-bank spectrometer close to its ultimate sensitivity limit.

Keywords

Cosmic microwave background frequency spectrum Spectroscopy Filter-banks 

Notes

Acknowledgments

We acknowledge the use of HI Recombination line calculation results obtained by J. A. Rubino-Martin, J. Chluba and R. Sunyaev. We are grateful to J. Chluba for many enlightening discussions.

References

  1. 1.
    J. Chluba, R.A. Sunyaev, MNRAS 419, 1294–1314 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    J.A. Rubino-Martin, J. Chluba, R.A. Sunyaev, Astron. Astrophys. 485, 377393 (2008)CrossRefGoogle Scholar
  3. 3.
    G.F. Smoot et al., Astrophys. J. 291, L23–L27 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    H.P. Gush, M. Halpern, E.H. Wishnow, Phys. Rev. Lett. 65(5), 537 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    D.J. Fixsen, J.C. Mather, Astrophys. J. 581, 817–822 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    M. Zannoni et al., Astrophys. J. 688, 12–23 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    M. Seiffert et al., Astrophys. J. 734, 6 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    A. Kogut et al., JCAP 07, 025 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    B. Carli, V. Natale, Appl. Opt. 18, 23 (1979)CrossRefGoogle Scholar
  10. 10.
    P. De Bernardis, in Interferometry as a Tool for IR and Sub-mm Spectral Analysis, Infrared Astronomy from Space, ed. by F. Melchiorri, P. Encrenaz. vol. 1 (Scuola Superiore G. Reiss Romoli, 1992), p. 277Google Scholar
  11. 11.
    A. Tartari et al., Astrophys. J. 688, 32–42 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    E. Shirokoff et al., Proc. SPIE 8452, 84520R (2012)CrossRefGoogle Scholar
  13. 13.
    A. Endo et al., Appl. Phys. Lett. 103, 03260 (2013)CrossRefGoogle Scholar
  14. 14.
    R. O’Brient et al., Appl. Phys. Lett. 102, 063506 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    J. McMahon et al., J. Low Temp. Phys. 167, 879–884 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    B.A. Benson et al., Proc. SPIE 9153, 9153P (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. Tartari
    • 1
    Email author
  • E. S. Battistelli
    • 2
  • M. Piat
    • 1
  • D. Prêle
    • 1
  1. 1.Laboratoire APC - CNRSUniversité Paris-DiderotParisFrance
  2. 2.Dipartimento di FisicaUniversity of Roma “La Sapienza”RomeItaly

Personalised recommendations