Skip to main content
Log in

CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Cosmic microwave background (CMB) spectral science is experiencing a renewed interest after the impressive result of COBE–FIRAS in the early Nineties. In 2011, the PIXIE proposal contributed to reopen the prospect of measuring deviations from a perfect 2.725 K planckian spectrum. Both COBE–FIRAS and PIXIE are differential Fourier transform spectrometers (FTSes) capable to operate in the null condition across \(\sim \)2 frequency decades (in the case of PIXIE, the frequency span is 30 GHz–6 THz). We discuss a complementary strategy to observe CMB spectral distortions at frequencies lower than 250 GHz, down to the Rayleigh–Jeans tail of the spectrum. The throughput advantage that makes the FTS capable of achieving exquisite sensitivity via multimode operation becomes limited at lower frequencies. We demonstrate that an array of 100 cryogenic planar filter-bank spectrometers coupled to single mode antennas, on a purely statistical ground, can perform better than an FTS between tens of GHz and 200 GHz (a relevant frequency window for cosmology) in the hypothesis that (1) both instruments have the same frequency resolution and (2) both instruments are operated at the photon noise limit (with the FTS frequency band extending from \(\sim \)tens of GHz up to 1 THz). We discuss possible limitations of these hypotheses, and the constraints that have to be fulfilled (mainly in terms of efficiency) in order to operate a cryogenic filter-bank spectrometer close to its ultimate sensitivity limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J. Chluba, R.A. Sunyaev, MNRAS 419, 1294–1314 (2012)

    Article  ADS  Google Scholar 

  2. J.A. Rubino-Martin, J. Chluba, R.A. Sunyaev, Astron. Astrophys. 485, 377393 (2008)

    Article  Google Scholar 

  3. G.F. Smoot et al., Astrophys. J. 291, L23–L27 (1985)

    Article  ADS  Google Scholar 

  4. H.P. Gush, M. Halpern, E.H. Wishnow, Phys. Rev. Lett. 65(5), 537 (1990)

    Article  ADS  Google Scholar 

  5. D.J. Fixsen, J.C. Mather, Astrophys. J. 581, 817–822 (2002)

    Article  ADS  Google Scholar 

  6. M. Zannoni et al., Astrophys. J. 688, 12–23 (2008)

    Article  ADS  Google Scholar 

  7. M. Seiffert et al., Astrophys. J. 734, 6 (2011)

    Article  ADS  Google Scholar 

  8. A. Kogut et al., JCAP 07, 025 (2011)

    Article  ADS  Google Scholar 

  9. B. Carli, V. Natale, Appl. Opt. 18, 23 (1979)

    Article  Google Scholar 

  10. P. De Bernardis, in Interferometry as a Tool for IR and Sub-mm Spectral Analysis, Infrared Astronomy from Space, ed. by F. Melchiorri, P. Encrenaz. vol. 1 (Scuola Superiore G. Reiss Romoli, 1992), p. 277

  11. A. Tartari et al., Astrophys. J. 688, 32–42 (2008)

    Article  ADS  Google Scholar 

  12. E. Shirokoff et al., Proc. SPIE 8452, 84520R (2012)

    Article  Google Scholar 

  13. A. Endo et al., Appl. Phys. Lett. 103, 03260 (2013)

    Article  Google Scholar 

  14. R. O’Brient et al., Appl. Phys. Lett. 102, 063506 (2013)

    Article  ADS  Google Scholar 

  15. J. McMahon et al., J. Low Temp. Phys. 167, 879–884 (2012)

    Article  ADS  Google Scholar 

  16. B.A. Benson et al., Proc. SPIE 9153, 9153P (2014)

    Google Scholar 

Download references

Acknowledgments

We acknowledge the use of HI Recombination line calculation results obtained by J. A. Rubino-Martin, J. Chluba and R. Sunyaev. We are grateful to J. Chluba for many enlightening discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tartari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tartari, A., Battistelli, E.S., Piat, M. et al. CMB Science: Opportunities for a Cryogenic Filter-Bank Spectrometer. J Low Temp Phys 184, 780–785 (2016). https://doi.org/10.1007/s10909-015-1431-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1431-6

Keywords

Navigation