Journal of Low Temperature Physics

, Volume 183, Issue 3–4, pp 215–221 | Cite as

Backreaction of Tracer Particles on Vortex Tangle in Helium II Counterflow

  • E. Varga
  • C. F. Barenghi
  • Y. A. Sergeev
  • L. Skrbek


We report computer simulations of the interaction of seeding particles with quantized vortices and with the normal fluid flow in thermal counterflow of superfluid \(^4\)He. We show that if the number of particles is too large, the vortex tangle is significantly affected, posing problems in the interpretation of visualization experiments. The main effects are an increase in vortex line density and a change in polarization of the vortex tangle, caused by the action of the Stokes drag of the viscous normal fluid on the trapped particles. We argue that in the case of large particle number, typically used for the particle image velocimetry technique, the tangle properties might become significantly changed. On the contrary, the particle tracking velocimetry technique that uses smaller particle concentration should not be appreciably affected.


Superfluid 4He Quantum turbulence Visualization Numerical simulations 



The program used in the simulations is a modified version of the qvort code created by Andrew Baggaley and others, to whom we are grateful. The research is financially supported by the Charles University in Prague under GAUK No. 366213.


  1. 1.
    M. Raffel, C.E. Willert, S.T. Werely, J. Kompenhans, Particle Image Velocimetry—A Practical Guide (Springer, Berlin, 2007)Google Scholar
  2. 2.
    C.F. Barenghi, L. Skrbek, K.R. Sreenivasan, Proc. Natl. Acad. Sci. USA 111, 4647 (2014)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Y.A. Sergeev, C.F. Barenghi, J. Low Temp. Phys. 157(5–6), 429 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Nature 441(7093), 588 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    W. Guo et al., Proc. Natl. Acad. Sci. USA 111, 4653 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Mineda et al., Phys. Rev. B 87(17), 174508 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    K.W. Schwarz, Phys. Rev. B 38, 2398 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    A.W. Baggaley, C.F. Barenghi, Phys. Rev. B 83(13), 134509 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    H. Adachi, S. Fujiyama, M. Tsubota, Phys. Rev. B 81, 104511 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    D.R. Poole et al., Phys. Rev. B 71(6), 064514 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    D. Kivotides, C.F. Barenghi, Y.A. Sergeev, Phys. Rev. B 77, 014527 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • E. Varga
    • 1
  • C. F. Barenghi
    • 2
  • Y. A. Sergeev
    • 3
  • L. Skrbek
    • 1
  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.Joint Quantum Centre Durham-Newcastle, School of Mathematics and StatisticsNewcastle UniversityNewcastle upon TyneUK
  3. 3.Joint Quantum Centre Durham-Newcastle, School of Mechanical and Systems EngineeringNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations