Skip to main content
Log in

The LUCIFER Project: Achievements and Near Future Prospects

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In the view of exploring the inverted hierarchy region future experiments investigating the neutrinoless double beta decay have to demand for detectors with excellent energy resolution and zero background in the energy region of interest. Cryogenic scintillating bolometers are very suitable detectors for this task since they provide particle discrimination: the simultaneous detection of the phonon and light signal allows us to identify the interacting type of particle and thus guarantees a suppression of \(\alpha \)-induced backgrounds, the key-issue for next-generation tonne-scale bolometric experiments. The LUCIFER project aims at running the first array of enriched scintillating Zn\(^{\text {82}}\)Se bolometers (total mass of about 8kg of \(^{\text {82}}\)Se) with a background level as low as 10\(^{\text {--3}}\) counts/(keV kg y) in the energy region of interest. The main effort is currently focused on the finalization of the crystal growth procedure in order to achieve high quality Zn\(^{\text {82}}\)Se crystals both in terms of radiopurity and bolometric properties. We present results from tests of such crystals operated at mK temperatures which demonstrate the excellent background rejection capabilities of this detection approach towards a background-free demonstrator experiment. Besides, the high purity of the enriched \(^{\text {82}}\)Se material allows us to establish the most stringent limits on the half-life of the double beta decay of \(^{\text {82}}\)Se on excited levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Since gaseous SeF\(_{\text {6}}\) can be produced, the enrichment procedure of choice for selenium is centrifugal enrichment, a well established and the most cost-efficient enrichment technology.

References

  1. F.T. Avignone, S.R. Elliott, J. Engel, Rev. Mod. Phys. 80, 481 (2008)

    Article  ADS  Google Scholar 

  2. E. Majorana, Il Nuovo Cimento 14, 171 (1937)

    Article  Google Scholar 

  3. L. Cardani et al., JINST 7, P01020 (2012)

    ADS  Google Scholar 

  4. D.R. Artusa et al., Eur. Phys. J. C 74, 2956 (2014)

    Article  ADS  Google Scholar 

  5. A.S. Barabash, Nucl. Phys. A 935, 52 (2015)

    Article  ADS  Google Scholar 

  6. E. Andreotti et al., Astropart. Phys. 34, 822–831 (2011)

    Article  ADS  Google Scholar 

  7. C. Arnaboldi et al., Nucl. Instrum. Meth. A 518, 775–798 (2004)

    Article  ADS  Google Scholar 

  8. F. Alessandria et al., Astropart. Phys. 45, 13–22 (2013)

    Article  ADS  Google Scholar 

  9. M. Clemenza et al., Eur. Phys. J. C 71, 1805 (2011)

    Article  ADS  Google Scholar 

  10. C. Bucci et al., Eur. Phys. J. C 2, 155–168 (2009)

    Article  Google Scholar 

  11. D.R. Artusa et al., Eur. Phys. J. C 74, 3096 (2014)

    Article  ADS  Google Scholar 

  12. G. Angloher et al., Eur. Phys. J. C 72, 1971 (2012)

    Article  ADS  Google Scholar 

  13. G. Angloher et al., Eur. Phys. J. C 74, 3184 (2014)

    Article  ADS  Google Scholar 

  14. CUPID interest group, arXiv:1504.03599 (2015)

  15. CUPID interest group, arXiv:1504.0361 (2015)

  16. M. Ambrosio et al., Phys. Rev. D 52, 3793 (1995)

    Article  ADS  Google Scholar 

  17. D. Lincoln et al., Phys. Rev. Lett. 110, 012501 (2010)

    Article  ADS  Google Scholar 

  18. M. Berglund, M.E. Wieser, Pure Appl. Chem. 83, 397–410 (2011)

    Article  Google Scholar 

  19. J.W. Beemann et al., Adv. High Energy Phys. 2013, 237973 (2013). doi:10.1155/2013/237973

    Google Scholar 

  20. C. Arnaboldi et al., Astropart. Phys. 34, 344 (2011)

    Article  ADS  Google Scholar 

  21. J.W. Beemann et al., J. Instrum. 8, P05021 (2013)

    Google Scholar 

  22. I. Dafinei, J. Cryst. Growth 393, 13–17 (2014)

    Article  ADS  Google Scholar 

  23. V. Ryzhikov et al., J. Cryst. Growth 364, 111–117 (2013)

    Article  ADS  Google Scholar 

  24. T.O. Niinikoski et al., Europhys. Lett. 1, 499 (1986)

    Article  ADS  Google Scholar 

  25. J.W. Beemann et al., arXiv:1508.01709 (2015), submitted to journal

  26. G. Heusser et al., Radioactiv. Environm. 8, 495–510 (2006)

    Article  Google Scholar 

  27. J. Suhonen et al., Z. Phys. A 358, 297–301 (1997)

    Article  ADS  Google Scholar 

  28. R. Arnold et al., Nucl. Phys. A 636, 209–223 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Schäffner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beeman, J.W., Bellini, F., Benetti, P. et al. The LUCIFER Project: Achievements and Near Future Prospects. J Low Temp Phys 184, 852–858 (2016). https://doi.org/10.1007/s10909-015-1423-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1423-6

Keywords

Navigation