Journal of Low Temperature Physics

, Volume 184, Issue 1–2, pp 167–172 | Cite as

LEKIDs as mm-Wave Polarisation Analysers: Fabrication, Test Bench and Early Results

  • A. Tartari
  • B. Bélier
  • N. Bleurvacq
  • M. Calvo
  • D. Cammilleri
  • T. Decourcelle
  • A. Monfardini
  • I. Moric
  • M. Piat
  • D. Prêle
  • G. F. Smoot
Article
  • 81 Downloads

Abstract

We have demonstrated in an earlier paper that LEKIDs can be used in a polarisation selective way in a filled array configuration. A polarised response can be achieved by means of thick Nb polarising grids lithographed on the rear side of a 300 microns silicon wafer, on which Al resonators have been previously patterned. In the most interesting scheme that we have investigated, a unit cell formed by 4 pixels (2 by 2) responds simultaneously to two orthogonal (cartesian) polarisation states. To assess the effectiveness of this detection scheme, we have fabricated a first generation of devices (9 small arrays, 20–25 pixels each, on a 4\(^{\prime \prime }\) Silicon wafer) by using a double-sided mask aligner suitable for a precise positioning of the individual grids in correspondence of each resonator’s meander, for the different LEKID geometries. We describe here the realisation of these first devices. The construction of a dedicated polarimetric test bench is also described in this contribution, together with the first characterisation results. We consider this activity as a first and necessary step to evaluate the polarisation purity attainable with polarisation-sensitive pixels whose size is comparable to the wavelength. This is a fundamental information to drive further studies.

Keywords

LEKIDs Polarimetry Cosmic microwave background 

References

  1. 1.
    R. Adam et al., A&A 576, A12 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    R. O’Brient et al., Appl. Phys. Lett. 102, 063506 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    A. Tartari et al., JLTP 176, 524–529 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    F.B. Gross, E.J. Kuster, IEEE Trans. Antennas Propag. 35, 1492 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    A. Monfardini et al., APJSS 194, 24 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    A. Kusaka, E.J. Wollack, T.R. Stevenson, JOSAA 31, 7 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    D.T. Chuss et al., PASP 120, 430–438 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    A. Ritacco et al., J. Low Temp. Phys. (2015). doi:10.1007/s10909-015-1340-8
  9. 9.
    A. Catalano et al., A&A 569, A9 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    P.D. Mauskopf et al., JLTP 176(3–4), 545 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. Tartari
    • 1
  • B. Bélier
    • 2
  • N. Bleurvacq
    • 1
  • M. Calvo
    • 3
  • D. Cammilleri
    • 4
  • T. Decourcelle
    • 1
  • A. Monfardini
    • 3
  • I. Moric
    • 1
  • M. Piat
    • 1
  • D. Prêle
    • 1
  • G. F. Smoot
    • 1
    • 5
  1. 1.Laboratoire APC - CNRSUniversité Paris-DiderotParisFrance
  2. 2.IEF-CNRSUniversité Paris SudOrsayFrance
  3. 3.Institut Néel-CNRSGrenobleFrance
  4. 4.LPGP-CNRSUniversité Paris SudOrsayFrance
  5. 5.LBNLBerkeleyUSA

Personalised recommendations