Journal of Low Temperature Physics

, Volume 183, Issue 3–4, pp 258–263 | Cite as

Stability of Surface State Electrons on Helium Films

  • P. Leiderer
  • E. Scheer
  • K. Kono
  • J.-J. Lin
  • D. G. Rees
Article

Abstract

Electrons on helium substrates form a model Coulomb system in which the transition from classical electron liquid to Wigner crystal is readily observed. However, attempts to increase the electron density in order to observe the ‘quantum melting’ of the system to a Fermi degenerate gas are hindered by an instability of the helium surface. Here we describe experimental efforts to reach the degenerate regime on thin helium films and microstructured substrates, for which the surface instability is suppressed. We demonstrate that, although the electron densities obtained exceed those for bulk helium substrates, observation of quantum melting remains challenging. We discuss possible solutions to the technical challenges involved.

Keywords

Electrons on helium Thin films Quantum melting 

References

  1. 1.
    E. Andrei, Two-Dimensional Electron Systems on Helium and Other Cryogenic Substrates (Kluwer Academic, Dordrecht, 1997)CrossRefGoogle Scholar
  2. 2.
    F.M. Peeters, P.M. Platzman, Phys. Rev. Lett. 50, 2021 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    M. Wanner, P. Leiderer, Phys. Rev. Lett. 42, 315 (1979)ADSCrossRefGoogle Scholar
  4. 4.
    U. Albrecht, P. Leiderer, Europhys. Lett. 3, 705 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    J. Tempere, I.F. Silvera, J.T. Devreese, Phys. Rev. B 67, 035402 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    W. Guo, D. Jin, H.J. Maris, Phys. Rev. B 78, 014511 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    E.M. Joseph, V. Vadakkumbatt, A. Pal, A. Ghosh, J. Low Temp. Phys. 175, 78 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    K. Kajita, J. Phys. Soc. Jpn. 54, 4092 (1985)ADSCrossRefGoogle Scholar
  9. 9.
    H. Etz, W. Gombert, W. Idstein, P. Leiderer, Phys. Rev. Lett. 53, 2567 (1984)ADSCrossRefGoogle Scholar
  10. 10.
    H.-W. Jiang, M.A. Stan, A.J. Dahm, Surf. Sci. 196, 1–3 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    G. Mistura, T. Günzler, S. Neser, P. Leiderer, Phys. Rev. B 56, 8360 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    T. Günzler, B. Bitnar, G. Mistura, S. Neser, P. Leiderer, Surf. Sci. 361/362, 831 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    A. Angrik, J. Faustein, P. Klier, J. Leiderer, Phys. Low Temp. Phys. 137, 335–344 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    A. Faustein, Diploma thesis, University of Konstanz (2004)Google Scholar
  15. 15.
    F.M. Ellis, L. Li, Phys. Rev. Lett. 71, 1577 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    A. Valkering, J. Klier, P. Leiderer, Phys. B 284, 172–173 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    D.G. Rees, I. Kuroda, C.A. Marrache-Kikuchi, M. Höfer, P. Leiderer, K. Kono, Phys. Rev. Lett. 106, 026803 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    H. Ikegami, H. Akimoto, K. Kono, Phys. Rev. Lett. 102, 046807 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    H. Ikegami, H. Akimoto, D.G. Rees, K. Kono, Phys. Rev. Lett. 109, 236802 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    F. Shaban, T. Lorentz, R. Rau, M. Ashari, D.G. Rees, K. Kono, E. Scheer, P. Leiderer, J. Phys. 568, 012008 (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • P. Leiderer
    • 1
  • E. Scheer
    • 1
  • K. Kono
    • 2
    • 3
  • J.-J. Lin
    • 2
    • 3
    • 4
  • D. G. Rees
    • 2
    • 3
  1. 1.Department of PhysicsUniversity of KonstanzKonstanzGermany
  2. 2.NCTU-RIKEN Joint Research Laboratory, Institute of PhysicsNational Chiao Tung UniversityHsinchuTaiwan
  3. 3.RIKEN CEMSSaitamaJapan
  4. 4.Department of ElectrophysicsNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations