Skip to main content

Advertisement

Log in

Possible Dimensional Crossover to 1D of \(^3\)He Fluid in Nanochannels Observed in Susceptibilities

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Dimensional crossover to the one-dimensional (1D) state from higher dimensions has been studied for dilute \(^3\)He fluid adsorbed in 2.4 nm \(^4\)He-preplated nanochannels, by susceptibility measurements down to 70 mK using 4.29 MHz nuclear magnetic resonance. In nanochannels, since energy states of \(^3\)He motion perpendicular to the channel axis are discrete, a genuine 1D \(^3\)He fluid is expected when the Fermi energy is less than the first excitation \(\Delta _{01}\) for azimuthal motion. The susceptibilities \(\chi \) above 0.3 K show the Curie-law susceptibilities independent of the \(^3\)He density, which are characteristic of nondegenerate fluid in higher dimensions. With decreasing the temperature, a significant reduction of \(\chi T\) was observed from about 0.3 K for all \(^3\)He densities. It is considered to be due to the dimensional crossover below \(\Delta _{01}\sim 0.5\) K to the 1D \(^3\)He state in the semi-degenerate regime above the Fermi temperature. In the 1D state at lower temperatures, T-independent \(\chi \) were observed for \(^3\)He of 0.019 layers below 0.1 K. It suggests that the 1D \(^3\)He fluid enters the quantum degenerate regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. T. Giamarchi, Quantum Physics in One Dimension (Clarendon Press, Oxford, 2003)

    Book  MATH  Google Scholar 

  2. S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  3. J.M. Luttinger, J. Math. Phys. 4, 1154 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Giamarchi, Int. J. Mod. Phys. B 26, 1244004 (2012)

    Article  ADS  Google Scholar 

  5. J. Taniguchi, R. Fujii, M. Suzuki, Phys. Rev. B 84, 134511 (2011)

    Article  ADS  Google Scholar 

  6. N. Wada, M. Hieda, R. Toda, T. Matsushita, Low Temp. Phys. 39, 786 (2013) (Fiz. Nizk. Temp. 39, 1012 (2013))

  7. T. Matsushita, A. Shinohara, M. Hieda, N. Wada, J. Low Temp. Phys., this Special Issue

  8. T. Eggel, M.A. Cazalilla, M. Oshikawa, Phys. Rev. Lett. 107, 275302 (2011)

    Article  ADS  Google Scholar 

  9. B. Kulchytskyy, G. Gervais, A. Del Maestro, Phys. Rev. B 88, 064512 (2013)

    Article  ADS  Google Scholar 

  10. J. Taniguchi, A. Yamaguchi, H. Ishimoto, H. Ikegami, T. Matsushita, N. Wada, S.M. Gatica, M.W. Cole, F. Ancilotto, S. Inagaki, Y. Fukushima, Phys. Rev. Lett. 94, 065301 (2005)

    Article  ADS  Google Scholar 

  11. B. Yager, J. Nyéki, A. Casey, B.P. Cowan, C.P. Lusher, J. Saunders, Phys. Rev. Lett. 111, 215303 (2013)

    Article  ADS  Google Scholar 

  12. G.E. Astrakharchik, J. Boronat, Phys. Rev. B 90, 235439 (2014)

    Article  ADS  Google Scholar 

  13. K. Yamashita, D.S. Hirashima, J. Phys. Soc. Jpn. 80, 114602 (2011)

    Article  ADS  Google Scholar 

  14. T. Matsushita, R. Toda, J. Taniguchi, H. Ikegami, N. Wada, J. Low Temp. Phys. 138, 289 (2005)

    Article  ADS  Google Scholar 

  15. Y. Matsushita, J. Taniguchi, A. Yamaguchi, H. Ishimoto, H. Ikegami, T. Matsushita, N. Wada, S.M. Gatica, M.W. Cole, F. Ancilotto, J. Low Temp. Phys. 138, 211 (2005)

    Article  ADS  Google Scholar 

  16. S. Inagaki, A. Koiwai, N. Suzuki, Y. Fukushima, K. Kuroda, Bull. Chem. Soc. Jpn. 69, 1449 (1996)

    Article  Google Scholar 

  17. Y. Nakashima, Y. Minato, T. Matsushita, M. Hieda, N. Wada, J. Phys.: Conf. Ser. 400, 012055 (2012)

  18. H. Ikegami, T. Okuno, Y. Yamato, J. Taniguchi, N. Wada, S. Inagaki, Y. Fukushima, Phys. Rev. B 68, 092501 (2003)

  19. R.H. Higley, D.T. Sprague, R.B. Hallock, Phys. Rev. Lett. 63, 2570 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank S. Inagaki and Y. Fukushima for providing the substrate FSM, and M. Tsuchiizu for discussion on 1D quantum systems. This research has been partly supported by a Grant-in-Aid for Scientific Research (C) (Grant No. 23540404) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taku Matsushita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsushita, T., Kurebayashi, K., Shibatsuji, R. et al. Possible Dimensional Crossover to 1D of \(^3\)He Fluid in Nanochannels Observed in Susceptibilities. J Low Temp Phys 183, 251–257 (2016). https://doi.org/10.1007/s10909-015-1369-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1369-8

Keywords

Navigation