Journal of Low Temperature Physics

, Volume 184, Issue 1–2, pp 11–16 | Cite as

Electrical Characteristics of Superconducting Ti Transition Edge Sensors

  • W. Zhang
  • J. Q. Zhong
  • W. Miao
  • Z. Wang
  • D. Liu
  • Q. J. Yao
  • S. C. Shi
  • T. J. Chen
  • M. J. Wang
Article

Abstract

We have designed and fabricated superconducting Ti transition edge sensors (TES) with different microbridge lengths varying from 1 to 6 \(\upmu \)m. The current–voltage characteristics of the fabricated Ti TESs are measured at different bath temperatures using a commercial SQUID amplifier. The thermal conductance (G) is found to be about 300 pW/K for a 2.6-\(\upmu \)m-long device. In addition, the effective response time measured with a current pulse signal is about 3 \(\upmu \)s, and decreases with increasing the bias voltage because of negative electro-thermal feedback. The obtained electrical noise equivalent power from the measured current noise is about \(4 \times 10^{-17}\) W/Hz\(^{0.5}\), which is sufficiently low for TeSIA instrument.

Keywords

Transition edge sensor Thermal conductance Noise equivalent power 

References

  1. 1.
    W.S. Holland, D. Bintley, E.L. Chapin, A. Chrysostomou, G.R. Davis et al., Mon. Not. R. Astron. Soc. 430, 2513 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    J. Yang, Y.X. Zuo, Z. Lou, J.Q. Cheng, Q.Z. Zhang et al., Res. Astron. Astrophys. 13(12), 1493–1508 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    S.C. Shi et al., This issueGoogle Scholar
  4. 4.
    B.S. Karasik, R. Cantor, Appl. Phys. Lett. 98, 193503 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    B.S. Karasik, A.V. Sergeev, D.E. Prober, IEEE Trans. Terahertz Sci. Technol. 1(1), 97–111 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Triton TM 200/400, Cryofree dilution refrigerator, Issue 3.0 (Oxford Instruments, 2012)Google Scholar
  7. 7.
    High performance DC SQUID electronics, XXF-1 manual, v3.3.11. Magnicon Phys. Res. Instrum., Hamburg, Germany (2013)Google Scholar
  8. 8.
    K.D. Irwin, G.C. Hilton, Cryogenic Particle Detection, vol. 99, Topics in Applied Physics (Springer, Berlin, 2005)Google Scholar
  9. 9.
    J. Wei, D. Olaya, B.S. Karasik, S.V. Pereverzev, A.V. Sergeev, M.E. Gershenson, Nat. Nanotechnol. 3, 496–500 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    A.J. Manninen, J.K. Suoknuuti, M.M. Leivo, J.P. Pekola, Appl. Phys. Lett. 74(20), 3020 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    A.V. Sergeev, V.V. Mitin, B.S. Karasik, M.E. Gershenson, Physica E 19, 173 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    B.S. Karasik, S.V. Pereverzev, D. Olaya, J. Wei, M.E. Gershenson, A.V. Sergeev, I.E.E.E. Trans, Appl. Supercond. 19(3), 532–535 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • W. Zhang
    • 1
    • 2
  • J. Q. Zhong
    • 1
    • 2
  • W. Miao
    • 1
    • 2
  • Z. Wang
    • 1
    • 2
  • D. Liu
    • 1
    • 2
  • Q. J. Yao
    • 1
    • 2
  • S. C. Shi
    • 1
    • 2
  • T. J. Chen
    • 3
  • M. J. Wang
    • 3
  1. 1.Purple Mountain ObservatoryCASNanjingChina
  2. 2.Key Lab of Radio AstronomyCASNanjingChina
  3. 3.Institute of Astronomy and AstrophysicsAcademia SinicaTaipeiTaiwan

Personalised recommendations