Skip to main content

Structural Transitions in a Quasi-1D Wigner Solid on Liquid Helium

Abstract

We present a detailed study of structural transitions of an electron system on liquid helium in quasi-1D confinement geometry. The structural transitions are experimentally observed as current oscillations in transport measurements with changing electrostatic confinement parameters. Finite element modelling and Monte Carlo simulations were used to investigate the electron configuration. With increasing electron density, the single chain of electrons splits into a two-, three- and so on row configuration. A proliferation of defects accompanies each structural transition. We find a good agreement between the observed current modulation and the evolution of the electron row configuration predicted by our calculations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. The variational formulation of the problem with Dirichlet boundary conditions were used for calculations.

References

  1. E.Y. Andrei, Two-Dimensional Electron Systems on Helium and Other Cryogenic Substrates (Kluwer Academic Publishers, Dordrecht, 1997)

    Book  Google Scholar 

  2. Y.P. Monarkha, K. Kono, Two-Dimensional Coulomb Liquids and Solids (Springer, Berlin, 2004)

    Book  Google Scholar 

  3. K. Shirahama, S. Ito, H. Suto, K. Kono, J. Low Temp. Phys. 101, 433 (1995)

    Article  ADS  Google Scholar 

  4. R.S. Crandall, R. Williams, Phys. Lett. A 34, 404 (1971)

    Article  ADS  Google Scholar 

  5. C.C. Grimes, G. Adams, Phys. Rev. Lett. 42, 12 (1979)

    Article  Google Scholar 

  6. Y.P. Monarkha, V. Shikin, Zh Eksp, Teor. Phys. 68, 1423 (1975)

    Google Scholar 

  7. D.S. Fisher, B.I. Halperin, P.M. Platzman, Phys. Rev. Lett. 42, 798 (1979)

    Article  ADS  Google Scholar 

  8. M.I. Dykman, Y.G. Rubo, Phys. Rev. Lett. 78, 25 (1997)

    Article  Google Scholar 

  9. W.F. Vinen, J. Phys. Conf. Ser. 11, 9709 (1999)

    Google Scholar 

  10. H. Ikegami, H. Akimoto, K. Kono, Phys. Rev. Lett. 102, 046807 (2009)

    Article  ADS  Google Scholar 

  11. V.V. Deshpande, M. Bockrath, L.I. Glazman, A. Yacoby, Nature 464(7286), 209 (2010)

    Article  ADS  Google Scholar 

  12. J.S. Meyer, K. Matveev, J. Phys. Condens. Matter 21, 023203 (2009)

    Article  ADS  Google Scholar 

  13. D.G. Rees, I. Kuroda, C. Marrache-Kikuchi, M. Hofer, P. Leiderer, K. Kono, Phys. Rev. Lett. 106, 026803 (2011)

    Article  ADS  Google Scholar 

  14. D.G. Rees, H. Totsuji, K. Kono, Phys. Rev. Lett. 108, 176801 (2012)

    Article  ADS  Google Scholar 

  15. H. Ikegami, H. Akimoto, K. Kono, Phys. Rev. B 82, 201104(R) (2010)

    Article  ADS  Google Scholar 

  16. I. Guillamón, R. Córdoba, J. Sesé, D.J. Teresa, Nat. Phys. 10, 851 (2014)

    Article  Google Scholar 

  17. G. Piacente, I. Schweigert, J. Betouras, F. Peeters, Phys. Rev. B 69, 045324 (2004)

    Article  ADS  Google Scholar 

  18. H. Ikegami, H. Akimoto, D.G. Rees, K. Kono, Phys. Rev. Lett. 109, 236802 (2012)

    Article  ADS  Google Scholar 

  19. D.G. Rees, H. Ikegami, K. Kono, J. Phys. Soc. Jpn. 82, 124602 (2013)

    Article  ADS  Google Scholar 

  20. F. Hecht, J. Numer. Math. 20, 251 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Marty, J. Phys. C 19, 6097 (1986)

    Article  ADS  Google Scholar 

  22. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21(6), 1087 (1953)

    Article  ADS  Google Scholar 

  23. M. Porto, J. Phys. A 33, 6211 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. A.D. Klironomos, J.S. Meyer, Phys. Rev. B 84, 024117 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 24000007 and was performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Beysengulov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beysengulov, N.R., Rees, D.G., Lysogorskiy, Y. et al. Structural Transitions in a Quasi-1D Wigner Solid on Liquid Helium. J Low Temp Phys 182, 28–37 (2016). https://doi.org/10.1007/s10909-015-1344-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1344-4

Keywords

  • Electrons
  • Helium surface
  • Microchannels
  • Quasi-one dimensional
  • Finite-element modelling
  • Monte Carlo